
Introduction to Programming
(in C++)

Loops

Jordi Cortadella, Ricard Gavaldà, Fernando Orejas

Dept. of Computer Science, UPC

Example

• Assume the following specification:

Input: read a number N > 0
Output: write the sequence 1 2 3 … N

(one number per line)

• This specification suggests some algorithm
with a repetitive procedure.

Introduction to Programming © Dept. CS, UPC 2

The while statement

• Syntax:

while (condition) statement;

(the condition must return a Boolean value)

• Semantics:
– Similar to the repetition of an if statement

– The condition is evaluated:
• If true, the statement is executed and the control returns to

the while statement again.

• If false, the while statement terminates.

Introduction to Programming © Dept. CS, UPC 3

Write the numbers 1…N

// Input: read a number N > 0

// Output: write the numbers 1...N
(one per line)

int main() {

int N;

cin >> N;

int i = 1;

while (i <= N) {

// The numbers 1..i-1 have been written

cout << i << endl;

i = i + 1;

}

}

Introduction to Programming © Dept. CS, UPC 4

Product of two numbers
//Input: read two non-negative numbers x and y
//Output: write the product xy

// Constraint: do not use the  operator

// The algorithm calculates the sum x+x+x+…+x (y times)

int main() {
int x, y;
cin >> x >> y; // Let x=A, y=B
int p = 0;
// Invariant: AB = p + xy
while (y > 0) {

p = p + x;
y = y – 1;

}
cout << p << endl;

}

Introduction to Programming © Dept. CS, UPC 5

A quick algorithm for the product

• Let p be the product x y

• Observation

– If y is even, p = (x 2)  (y/2)

– If y is odd, p = x  (y-1) + x
and (y-1) becomes even

• Example: 17  38 = 646

Introduction to Programming © Dept. CS, UPC 6

x y p

17 38

34 19

34 18 34

68 9

68 8 68

136 4

272 2

544 1

544 0 544

646

A quick algorithm for the product
int main() {

int x, y;

cin >> x >> y; // Let x=A, y=B

int p = 0;

// Invariant: AB = p + xy

while (y > 0) {

if (y%2 == 0) {

x = x2;

y = y/2;

}

else {

p = p + x;

y = y – 1;

}

}

cout << p << endl;

}

Introduction to Programming © Dept. CS, UPC 7

x y p

17 38 0

34 19 0

34 18 34

68 9 34

68 8 102

136 4 102

272 2 102

544 1 102

544 0 646

Why is the quick product interesting?

• Most computers have a multiply instruction in
their machine language.

• The operations x2 and y/2 can be implemented
as 1-bit left and right shifts, respectively. So, the
multiplication can be implemented with shift and
add operations.

• The quick product algorithm is the basis for
hardware implementations of multipliers and
mimics the paper-and-pencil method learned at
school (but using base 2).

Introduction to Programming © Dept. CS, UPC 8

Quick product in binary: example

77 x 41 = 3157

1001101

x 0101001

1001101

1001101

1001101

110001010101

Introduction to Programming © Dept. CS, UPC 9

Counting a’s
• We want to read a text represented as a sequence of

characters that ends with ‘.’

• We want to calculate the number of occurrences of the
letter ‘a’

• We can assume that the text always has at least one
character (the last ‘.’)

• Example: the text

Programming in C++ is amazingly easy!.

has 4 a’s

Introduction to Programming © Dept. CS, UPC 10

Counting a’s
// Input: sequence of characters that ends with ‘.’
// Output: number of times ‘a’ appears in the
// sequence

int main() {
char c;
cin >> c;
int count = 0;
// Inv: count is the number of a’s in the visited
// prefix of the sequence. c contains the next
// non-visited character
while (c != ‘.’) {

if (c == ‘a’) count = count + 1;
cin >> c;

}

cout << count << endl;
}

Introduction to Programming © Dept. CS, UPC 11

Counting digits

• We want to read a non-negative integer and
count the number of digits (in radix 10) in its
textual representation.

• Examples
8713105  7 digits

156  3 digits
8  1 digit
0  1 digit (note this special case)

Introduction to Programming © Dept. CS, UPC 12

Counting digits
// Input: a non-negative number N
// Output: number of digits in N (0 has 1 digit)

int main() {
int N;
cin >> N;
int ndigits = 0;

// Inv: ndigits contains the number of digits in the
// tail of the number, N contains the remaining
// part (head) of the number
while (N > 9) {

ndigits = ndigits + 1;
N = N/10; // extracts one digit

}

cout << ndigits + 1 << endl;
}

Introduction to Programming © Dept. CS, UPC 13

Euclid’s algorithm for gcd

• Properties

– gcd(a,a)=a

– If a > b, then gcd(a,b) = gcd(a-b,b)

• Example

Introduction to Programming © Dept. CS, UPC 14

a b

114 42

72 42

30 42

30 12

18 12

6 12

6 6 gcd (114, 42)

Euclid’s algorithm for gcd

// Input: read two positive numbers (a and b)

// Output: write gcd(a,b)

int main() {

int a, b;

cin >> a >> b; // Let a=A, b=B

// gcd(A,B) = gcd(a,b)

while (a != b) {

if (a > b) a = a – b;

else b = b – a;

}

cout << a << endl;

}

Introduction to Programming © Dept. CS, UPC 15

Faster Euclid’s algorithm for gcd

• Properties

– gcd(a, 0)=a

– If b > 0 then gcd(a, b) = gcd(b, a mod b)

• Example

Introduction to Programming © Dept. CS, UPC 16

a b

114 42

42 30

30 12

12 6

6 0

Faster Euclid’s algorithm for gcd
// Input: read two positive numbers (a and b)

// Output: write gcd(a,b)

int main() {

int a, b;

cin >> a >> b; // Let a=A, b=B

// gcd(A,B) = gcd(a,b)

while (b != 0) {

int r = a%b;

a = b;

b = r; // Guarantees b < a (loop termination)

}

cout << a << endl;

}

Introduction to Programming © Dept. CS, UPC 17

Efficiency of Euclid’s algorithm

• How many iterations will Euclid’s algorithm need to
calculate gcd(a,b) in the worst case (assume a > b)?

– Subtraction version: a iterations
(consider gcd(1000,1))

– Modulo version:  5d(b) iterations,
where d(b) is the number of digits of b represented
in base 10 (proof by Gabriel Lamé, 1844)

Introduction to Programming © Dept. CS, UPC 18

Solving a problem several times
• In many cases, we might be interested in solving the

same problem for several input data.

• Example: calculate the gcd of several pairs of natural
numbers.

Introduction to Programming © Dept. CS, UPC 19

Input Output

12 56 4
30 30 30
1024 896 128
100 99 1
17 51 17

Solving a problem several times
// Input: several pairs of natural numbers at the input

// Output: the gcd of each pair of numbers written at the output

int main() {

int a, b;

// Inv: the gcd of all previous pairs have been

// calculated and written at the output

while (cin >> a >> b) {

// A new pair of numbers from the input

while (b != 0) {

int r = a%b;

a = b;

b = r;

}

cout << a << endl;

}

}

Introduction to Programming © Dept. CS, UPC 20

Calculate gcd(a,b) and
write the result into cout

Solving a problem several times
// Input: several pairs of natural numbers at the input

// Output: the gcd of each pair of numbers written at the output

int main() {

int a, b;

// Inv: the gcd of all previous pairs have been

// calculated and written at the output

while (cin >> a >> b) {

// A new pair of numbers from the input

while (b != 0) {

int r = a%b;

a = b;

b = r;

}

cout << a << endl;

}

}

Introduction to Programming © Dept. CS, UPC 21

Prime number

• A prime number is a natural number that has
exactly two distinct divisors: 1 and itself.
(Comment: 1 is not prime)

• Write a program that reads a natural number
(N) and tells whether it is prime or not.

• Algorithm: try all potential divisors from 2 to
N-1 and check whether the remainder is zero.

Introduction to Programming © Dept. CS, UPC 22

Prime number
// Input: read a natural number N>0
// Output: write “is prime” or “is not prime” depending on
// the primality of the number

int main() {
int N;
cin >> N;

int divisor = 2;
bool is_prime = (N != 1);
// 1 is not prime, 2 is prime, the rest enter the loop (assume prime)

// is_prime is true while a divisor is not found
// and becomes false as soon as the first divisor is found
while (divisor < N) {

if (N%divisor == 0) is_prime = false;
divisor = divisor + 1;

}

if (is_prime) cout << “is prime” << endl;
else cout << “is not prime” << endl;

}

Introduction to Programming © Dept. CS, UPC 23

Prime number

• Observation: as soon as a divisor is found,
there is no need to check divisibility with the
rest of the divisors.

• However, the algorithm tries all potential
divisors from 2 to N-1.

• Improvement: stop the iteration when a
divisor is found.

Introduction to Programming © Dept. CS, UPC 24

Prime number
// Input: read a natural number N>0
// Output: write “is prime” or “is not prime” depending on
// the primality of the number

int main() {
int N;
cin >> N;

int divisor = 2;
bool is_prime = (N != 1);

while (is_prime and divisor < N) {
is_prime = N%divisor != 0;
divisor = divisor + 1;

}

if (is_prime) cout << “is prime” << endl;
else cout << “is not prime” << endl;

}

Introduction to Programming © Dept. CS, UPC 25

Prime number: doing it faster

• If N is not prime, we can find two numbers,
a and b, such that:

N = a  b, with 1 < a  b <N

and with the following property: a  N

• There is no need to find divisors up to N-1. We
can stop much earlier.

• Note: a  N is equivalent to a2  N

Introduction to Programming © Dept. CS, UPC 26

Prime number: doing it faster
// Input: read a natural number N>0
// Output: write “is prime” or “is not prime” depending on
// the primality of the number

int main() {
int N;
cin >> N;

int divisor = 2;
bool is_prime = (N != 1);

while (is_prime and divisordivisor <= N) {
is_prime = N%divisor != 0;
divisor = divisor + 1;

}

if (is_prime) cout << “is prime” << endl;
else cout << “is not prime” << endl;

}

Introduction to Programming © Dept. CS, UPC 27

Is there any real difference?

Introduction to Programming © Dept. CS, UPC 28

Iterations

Number of bits

In real time (N= 2110454939)

> time prime_slow < number

is prime

10.984u 0.004s 0:11.10 98.9%

> time prime_fast < number

is prime

0.004u 0.000s 0:00.00 0.0%

Introduction to Programming © Dept. CS, UPC 29

The for statement

• Very often we encounter loops of the form:

i = N;
while (i <= M) {

do_something;
i = i + 1;

}

• This can be rewritten as:

for (i = N; i <= M; i = i + 1) {
do_something;

}

Introduction to Programming © Dept. CS, UPC 30

The for statement

• In general

for (S_init; condition; S_iter) S_body;

is equivalent to:

S_init;
while (condition) {
S_body;
S_iter;

}

Introduction to Programming © Dept. CS, UPC 31

Writing the numbers in an interval
// Input: read two integer numbers, N and M,
// such that N <= M.

// Output: write all the integer numbers in the
// interval [N,M]

int main() {

int N, M;
cin >> N >> M;

for (int i = N; i <= M; ++i) cout << i << endl;

}

Introduction to Programming © Dept. CS, UPC 32

Variable declared
within the scope

of the loop

Autoincrement
operator

Calculate xy

// Input: read two integer numbers,
x and y, such that y >= 0

// Output: write xy

int main() {

int x, y;

cin >> x >> y;

int p = 1;

for (int i = 0; i < y; ++i) p = px;

cout << p << endl;

}

Introduction to Programming © Dept. CS, UPC 33

Drawing a triangle

• Given a number n (e.g. n = 6), we want to
draw this triangle:

*
**

Introduction to Programming © Dept. CS, UPC 34

Drawing a triangle

// Input: read a number n > 0
// Output: write a triangle of size n

int main() {

int n;

cin >> n;

// Inv: the rows 1..i-1 have been written

for (int i = 1; i <= n; ++i) {
// Inv: ‘’ written j-1 times in row i
for (int j = 1; j <= i; ++j) cout << ‘’;

cout << endl;

}

}

Introduction to Programming © Dept. CS, UPC 35

Perfect numbers

• A number n > 0 is perfect if it is equal to the
sum of all its divisors except itself.

• Examples

– 6 is a perfect number (1+2+3 = 6)

– 12 is not a perfect number (1+2+3+4+6  12)

• Strategy

– Keep adding divisors until the sum exceeds the
number or there are no more divisors.

Introduction to Programming © Dept. CS, UPC 36

Perfect numbers
// Input: read a number n > 0
// Output: write a message indicating
// whether it is perfect or not

int main() {
int n;
cin >> n;

int sum = 0, d = 1;
// Inv: sum is the sum of all divisors until d-1
while (d <= n/2 and sum <= n) {

if (n%d == 0) sum += d;
d = d + 1;

}

if (sum == n) cout << “is perfect” << endl;
else cout << “is not perfect” << endl;

}

Introduction to Programming © Dept. CS, UPC 37

Perfect numbers

• Would the program work using the following
loop condition?

while (d <= n/2 and sum < n)

• Can we design a more efficient version
without checking all the divisors until n/2?

– Clue: consider the most efficient version of the
program to check whether a number is prime.

Introduction to Programming © Dept. CS, UPC 38

