Introduction to Programming
(in C++)

Algorithms on sequences.
Reasoning about loops: Invariants.

Jordi Cortadella, Ricard Gavalda, Fernando Orejas
Dept. of Computer Science, UPC

Outline

* Algorithms on sequences
— Treat-all algorithms
— Search algorithms

* Reasoning about loops: invariants

Maximum of a sequence

* Write a program that tells the largest number
in a non-empty sequence of integers.

// Pre: a non-empty sequence of integers is

// ready to be read at cin
// Post: the maximum number of the sequence has been
// written at the output

Assume the input sequence is: 23 12 -16 34 25

elem: | - 12 -16 34 25
m: |23 23 23 34 34

// Invariant: m is the largest number read
// from the sequence

Introduction to Programming © Dept. CS, UPC

Maximum of a sequence

int main() {
int m;

Why is this
necessary?

int elem;

cin >> m;
// Inv: m is the largest element read
// from the sequence Checks for end-of-sequence

while (cj_n >> elem) { and reads a new element.
if (elem > m) m = elem;

}

cout << m << endl;

Introduction to Programming © Dept. CS, UPC 4

Reading with cin

e The statement cin>>n can also be treated as a
Boolean expression:

— It returns true if the operation was successful

— It returns false if the operation failed:
* no more data were available (EOF condition) or

* the data were not formatted correctly (e.g. trying to read a double
when the input is a string)

* The statement:
cin >> n
can be used to detect the end of the sequence and

read a new element simultaneously. If the end of the
sequence is detected, n is not modified.

Finding a number greater than n

 Write a program that detects whether a sequence of
integers contains a number greater than n.

// Pre: at the input there is a non-empty sequence of
// integers in which the first number is n.

// Post: writes a Boolean value that indicates whether
// a number larger than n exists in the sequence.

Assume the input sequence is: 23 12 -16 24 25

num: - 12 -16 24
n: 23 23 23 23
found:| false| false| false true

// Invariant: “found” indicates that a value greater than

// n has been found.

Introduction to Programming

© Dept. CS, UPC

Finding a number greater than n

int main() {
int n, num;
cin >> n;
bool found = false;

// Inv: found indicates that a number
// greater than N has been found

while (not found and cin >> num) {
found = num > n;

}

cout << found << endl;

Introduction to Programming © Dept. CS, UPC

Algorithmic schemes on sequences

* The previous examples perform two different
operations on a sequence of integers:

— Finding the maximum number

— Finding whether there is a number greater than N

* They have a distinctive property:
— The former requires all elements to be visited

— The latter requires one element to be found

Treat-all algorithms

* A classical scheme for algorithms that need to
treat all the elements in a sequence

visited not visited

t

Initialize (the sequence and the treatment)
// Inv: The visited elements have been treated

while (not end of sequence) {
Get a new element e;

Treat e;

Introduction to Programming © Dept. CS, UPC

Search algorithms

* A classical scheme for algorithms that need to find
an element with a certain property in a sequence

bool found = false;

Initialize;

// Inv: “found” indicates whether the element has been
// found in the visited part of the sequence

while (not found and not end of sequence) {
Get a new element e;
if (Property(e)) found = true;

}

// “found” indicates whether the element has been found.
// “e” contains the element.

Introduction to Programming © Dept. CS, UPC

Longest repeated subsequence

* Assume we have a sequence of strings

cat dog bird cat bird bird cat cat cat dog mouse horse

 We want to calculate the length of the longest
sequence of repetitions of the first string.
Formally, if we have a sequence of strings

515525+ -595n
we want to calculate

max{j —i+1:1<i<j<n A 8 =841 =-"+=8j_1=25; =51}

Longest repeated subsequence

// Specification: see previous slide

// Variable to store the first string.

string first;

cin >> first;

string next; // Visited string in the sequence

// Length of the current and longest subsequences
int length = 1;

int longest = 1;

// Inv: “length” is the length of the current subsequence.
// “longest” is the length of the longest subsequence
// visited so far.

while (cin >> next) {
if (first != next) length = @; // New subsequence

else {
// The current one is longer

length = length + 1;
if (length > longest) longest = length;

}
// “longest” has the length of the longest subsequence

Introduction to Programming © Dept. CS, UPC

12

Search in the dictionary

* Assume we have a sequence of strings representing words.
The first string is a word that we want to find in the dictionary
that is represented by the rest of the strings. The dictionary is
ordered alphabetically.

* Examples:

dog ant bird cat cow dog eagle fox lion mouse pig rabbit shark whale yak

frog ant bird cat cow dog eagle fox lion mouse pig rabbit shark whale yak

 We want to write a program that tells us whether the first
word is in the dictionary or not.

Introduction to Programming © Dept. CS, UPC 13

Search in the dictionary

// Specification: see previous slide

// First word in the sequence (to be sought).
string word;

cin >> word;

// A variable to detect the end of the search
// (when a word is found that is not smaller than “word”).

bool found = false;

// Visited word in the dictionary (initialized as empty for
// the case in which the dictionary might be empty).

string next = “*;

// Inv: not found => the visited words are smaller than ‘“word”

while (not found and cin >> next) found = next >= word;

// “found” has detected that there is no need to read the rest of
// the dictionary

found = word == next;
// “found” indicates that the word was found.

Introduction to Programming © Dept. CS, UPC

14

Increasing number

* We have a natural number n. We want to
know whether its representation in base 10 is
a sequence of increasing digits.

* Examples:

134679 -2 increasing

56688 -2 increasing

3 =2 increasing
134729 - non-increasing

Introduction to Programming © Dept. CS, UPC

Increasing number

// Pre: n >= 0

// Post: It writes YES if the sequence of digits representing n (in base 10)
// 1is increasing, and it writes NO otherwise

int main() {
int n;
cin >> n;
// The algorithm visits the digits from LSB to MSB.
bool incr = true;
int previous = 9; // Stores a previous “fake” digit

// Inv: n contains the digits no yet treated, previous contains the
// last treated digit (that can never be greater than 9),

// incr implies all the treated digits form an increasing sequence
while (incr and n > @) {

int next = n%10;

incr = next <= previous;

previous = next;

n /= 10;
}

if (incr) cout << “YES” << endl;
else cout << “NO” << endl;

Introduction to Programming © Dept. CS, UPC

16

Insert a number in an ordered sequence

 Read a sequence of integers that are all in ascending order,
except the first one. Write the same sequence with the first
element in its correct position.

* Note: the sequence has at least one number. The output
sequence must have a space between each pair of
numbers, but not before the first one or after the last one.

 Example

Input: 15 2 6 9 12 18 20 35 /5
Output: 2 6 9 12 15 18 20 35 75

 The program can be designed with a combination of search
and treat-all algorithms.

Insert a number in an ordered sequence

int first;
cin >> first;

bool found = false; // controls the search of the location
int next; // the next element in the sequence

// Inv: All the read elements that are smaller than the first have been written

// not found => no number greater than or equal to the first has been
// found yet

while (not found and cin >> next) {
if (next >= first) found = true;
else cout << next << “ ”;

}

cout << first;

if (found) {
cout << “ “ << next;
// Inv: all the previous numbers have been written
while (cin >> next) cout << “ “ << next;

}

cout << endl;

Introduction to Programming © Dept. CS, UPC

19

REASONING ABOUT LOOPS:
INVARIANTS

Invariants

Invariants help to ...

— Define how variables must be initialized before a loop

— Define the necessary condition to reach the post-condition
— Define the body of the loop

— Detect whether a loop terminates

It is crucial, but not always easy, to choose a good
invariant.

Recommendation:

— Use invariant-based reasoning for all loops (possibly in an
informal way)

— Use formal invariant-based reasoning for non-trivial loops

General reasoning for loops

Initialization;

// Invariant: a proposition that holds

// * at the beginning of the loop

// * at the beginning of each iteration
// * at the end of the loop

// Invariant

while (condition) {
// Invariant A condition

Body of the loop;
// Invariant

}

// Invariant A - condition

Introduction to Programming © Dept. CS, UPC

Example with invariants

 Given n 2 0, calculate n!

e Definition of factorial:
nl=1*2%*3%*_.%(n-1) *n

(particular case: 0! = 1)

e Let’s pick an invariant:
— At each iteration we will calculate f =il
— We also know that i = n at all iterations

Calculating n!

Introduction to Programming

// Pre: n 2 0O
// It writes n!
int main() {

int n;

cin >> n;
int i = 0;
int £ = 1;

// Invariant: £ = i! and i = n
while (i < n) {
// £ =1l and i < n
i=1+1;
f = £*i;
// £ =1! and 1 = n

}
// f=1! and i <= nand i 2 n
// £ = nl

cout << f << endl;

© Dept. CS, UPC 32

Reversing digits

 Write a program that reverses the digits of a
number (representation in base 10)

* Examples:
35276 > 67253
19 —-> 91
3 =2 3
O 2> 0

Introduction to Programming © Dept. CS, UPC

33

Reversing digits

// Pre: n 20
// Post: It writes n with reversed digits (base 10)

int main() {

int n;

cin >> n; N

int r; —

r= 0; dddddd xyz

// Invariant (graphical): -
while (n > 0) {

r = 10*r + n%10;

n = n/l0;

—~
r

}

cout << r << endl;

Introduction to Programming © Dept. CS, UPC

34

Calculating =

e 5t can be calculated using the following series:

12 1-2-5

1
3'3.5 3.5.7

7T_1_|_
2_

* Since an infinite sum cannot be computed, it
may often be sufficient to compute the sum
with a finite number of terms.

Calculating &

// Pre: nterms > 0O

// It writes an estimation of & using nterms terms
// of the series

int main() {
int nterms;

cin >> nterms;

double sum = 1; // Approximation of m/2
double term = 1; // Current term of the sum

// Inv: sum is an approximation of n/2 with k terms,
// term is the k-th term of the series.
for (int k = 1; k < nterms; ++k) {
term = term*k/(2.0*k + 1.0);
sum = sum + term;

}

cout << 2*sum << endl;

Intrtkjuction to Programming © Dept. CS, UPC

36

Calculating &

* w=3.14159265358979323846264338327950288...

* The series approximation:

2.000000

5 3.098413
10 3.140578
15 3.141566
20 3.141592
25 3.141593

Introduction to Programming © Dept. CS, UPC

