Introduction to Programming
(in C++)

Multi-dimensional vectors

Jordi Cortadella, Ricard Gavalda, Fernando Orejas
Dept. of Computer Science, UPC

Matrices

e A matrix can be considered a two-dimensional
vector, i.e. a vector of vectors.

my_matrix:| 3 | 8 | 1

50| 6|3
/712 |9 |4

// Declaration of a matrix with 3 rows and 4 columns
vector< vector<int> > my_matrix(3,vector<int>(4));

// A more elegant declaration
typedef vector<int> Row; // One row of the matrix
typedef vector<Row> Matrix; // Matrix: a vector of rows

Matrix my_matrix(3,Row(4)); // The same matrix as above

Introduction to Programming © Dept. CS, UPC

Matrices

e A matrix can be considered as a 2-dimensional
vector, i.e., a vector of vectors.

my matrix:| 3 | 8 | 11 O
5|06 |3
7 l 2 l 9 l 4 l
A
my matrix[O0][2] my matrix[1][3]

my matrix[2]

Introduction to Programming © Dept. CS, UPC

n-dimensional vectors

e Vectors with any number of dimensions can
be declared:

typedef vector<int> Diml;
typedef vector<Diml> Dim2;
typedef vector<Dim2> Dim3;
typedef vector<Dim3> Matrix4D;

Matrix4D my_matrix(5,Dim3(i+1,Dim2(n,Dim1(9))));

Sum of matrices

e Design a function that calculates the sum of
two nxm matrices.

2 =11 1 171 [3 O]
0 1 |+|2 —-1|=12 O
1 31 10 —-21 11 1.

typedef vector< vector<int> > Matrix;

Matrix matrix_sum(const Matrix& a,
const Matrix& b);

How are the elements of a matrix visited? .

By rows By columns
3 J

R2R2RZ

| v

i i ||

\ 2/
For every row i For every column j
For every column j For every row i

Visit Matrix[i][7j] Visit Matrix[i][j]

Introduction to Programming © Dept. CS, UPC 6

Sum of matrices (by rows)

typedef vector< vector<int> > Matrix;

// Pre: a and b are non-empty matrices and have the same size.
// Returns a+b (sum of matrices).

Matrix matrix_sum(const Matrix& a, const Matrix& b) {

int nrows = a.size();
int ncols = a[@].size();
Matrix c(nrows, vector<int>(ncols));

for (int 1 = @; i < nrows; ++i) {
for (int j = 0; j < ncols; ++j) {
c[i][j] = a[1][3] + b[i][]];
}
}

return c;

Introduction to Programming © Dept. CS, UPC 7

Sum of matrices (by columns)

typedef vector< vector<int> > Matrix;

// Pre: a and b are non-empty matrices and have the same size.
// Returns a+b (sum of matrices).

Matrix matrix_sum(const Matrix& a, const Matrix& b) {

int nrows = a.size();
int ncols = a[0@].size();
Matrix c(nrows, vector<int>(ncols));

for (int j = @; j < ncols; ++j) {
for (int i = @; i < nrows; ++i) {
c[i][j] = a[1][3] + b[i][]];
}
}

return c;

Introduction to Programming © Dept. CS, UPC 8

Transpose a matrix

e Design a procedure that transposes a square matrix in
place:

void Transpose (Matrix& m);

3181 3
2| W |8|6]5
4 9 11219

e Observation: we need to swap the upper with the
lower triangular matrix. The diagonal remains intact.

Transpose a matrix

// Interchanges two values
void swap(int& a, int& b) {
int ¢ = a;
a = b;
b =c;

// Pre: m is a square matrix
// Post: m contains the transpose of the input matrix

void Transpose(Matrix& m) {
int n = m.size();

for (int i = 0; i < n - 1; ++i) {
for (int j =1 + 1; j < n; ++j) {
swap(m[i][3j], m[J]1[1i]);

}

Introduction to Programming © Dept. CS, UPC

10

Is @ matrix symmetric?

e Design a procedure that indicates whether a matrix is
symmetric:

bool is_symmetric(const Matrix& m);

3,04 3,04
O(6|5 O[6 |5
41519 4 1219
symmetric not symmetric

 Observation: we only need to compare the upper with
the lower triangular matrix.

Is @ matrix symmetric?

// Pre: m is a square matrix
// Returns true if m is symmetric, and false otherwise

bool is symmetric(const Matrix& m) {
int n = m.size();
for (int 1 =0; 1 < n - 1; ++1i) {
for (int j =1 + 1; j < n; ++j) {
if (m[i][j] '= m[j][i]) return false;

}

return true;

Introduction to Programming © Dept. CS, UPC

12

Search in a matrix

e Design a procedure that finds a value in a
matrix. If the value belongs to the matrix, the
procedure will return the location (i, j) at
which the value has been found.

// Pre: m is a non-empty matrix

// Post: i1 and j define the location of a cell
// that contains the value x in m.

// In case x is not in m, then i = j = -1.

void search(const Matrix& m, int x, int& i, int& j);

Introduction to Programming © Dept. CS, UPC 13

Search in a matrix

// Pre: m is a non-empty matrix

// Post: i and j define the location of a cell
// that contains the value x in M.

// In case x is not in m, then i = j = -1

void search(const Matrix& m, int x, int& i, int& j) {

int nrows = m.size();

int ncols = m[@].size();

bool found = false;

int i = 0;

while (not found and i < nrows) {
int j = 0;

while (not found and j < ncols) {
if (m[i][j] == x) found = true;

++3;
}
++1;
}
if (not found) {
i=-1;
j=-1;
}

Introduction to Programming © Dept. CS, UPC

14

Search in a sorted matrix

e A sorted matrix mis one in which

mi][J+1]
mli+1][]]

m[i][]]
mi][]]

IA IA

5|7 10|12
10 | 13
10|11 (12 | 15
11113 (14|17 | 20
11112 (19| 20|21 | 23
13114 20|22 | 25| 26

OO N |-

Search in a sorted matrix

e Example: let us find 10 in the matrix. We look at the
lower left corner of the matrix.

e Since 13 > 10, the value cannot be found in the last
row.

5|7 10|12
10 | 13
10|11 (12 | 15
11113 (14|17 | 20
11112 (19| 20|21 | 23
—>1 13|14 | 20|22 | 25| 26

O DO |N |- | €
U
(o)

Search in a sorted matrix

 We look again at the lower left corner of the
remaining matrix.

e Since 11 > 10, the value cannot be found in the row.

—>

Introduction to Programming

7

10

12

9

10

13

10

11

12

15

O DO |N |- | €

11

13

14

17

20

11

© Dept. CS, UPC

12

19

20

21

23

Search in a sorted matrix

e Since 9 < 10, the value cannot be found in the

column.
1 517 (10 12
2 | 5 9 | 10| 13
6 10| 11|12 | 15
—> 9 |11 13|14 |17 | 20

Introduction to Programming © Dept. CS, UPC

Search in a sorted matrix

e Since 11 > 10, the value cannot be found in the row.

Introduction to Programming © Dept. CS, UPC

19

Search in a sorted matrix

e Since 7 < 10, the value cannot be found in the
column.

Introduction to Programming © Dept. CS, UPC

20

Search in a sorted matrix

e The element has been found!

Introduction to Programming © Dept. CS, UPC

21

Search in a sorted matrix

e |nvariant: if the element is in the matrix, then
it is located in the sub-matrix [0...J, j...ncols-1]

y
Y

not here

Introduction to Programming © Dept. CS, UPC 22

Search in a sorted matrix

// Pre: m is non-empty and sorted by rows and columns

// in ascending order.
// Post: i and j define the location of a cell that contains the value
// X in m. In case x is not in m, then i=j=-1.

void search(const Matrix& m, int x, int& i, int& j) {
int nrows = m.size();
int ncols = m[@].size();
i = nrows - 1;
J =9;
bool found = false;
// Invariant: x can only be found in M[@..i,j..ncols-1]
while (not found and i >= @ and j < ncols) {
if (m[1][J] < x) ++3;
else if (m[i][j] > x) --1i;
else found = true;

}

if (not found) {
i=-1;
j = -1;

Introduction to Programming © Dept. CS, UPC

23

Search in a sorted matrix

 What is the largest number of iterations of a
search algorithm in a matrix?

Unsorted matrix | nrows x ncols

Sorted matrix nrows + ncols

e The search algorithm in a sorted matrix
cannot start in all of the corners of the matrix.
Which corners are suitable?

Matrix multiplication

e Design a function that returns the
multiplication of two matrices.

21-1/01
1|3]2]of
// Pre:

X

1]2]-1
3/ 0] 2
113
2 |-1] 4

// Returns axb (an nxp matrix)
Matrix multiply(const Matrix& a, const Matrix& b);

Introduction to Programming

© Dept. CS, UPC

a is a non-empty nxm matrix,
// b is a non-empty mxp matrix

4 111

25

Matrix multiplication

// Pre: a is a non-empty nxm matrix, b is a non-empty mxp matrix.
// Returns axb (an nxp matrix).

Matrix multiply(const Matrix& a, const Matrix& b) {

int n = a.size();
int m = a[@].size();
int p = b[@].size();

Matrix c(n, vector<int>(p));

for (int i = 0; i < n; ++i) {
for (int j = 0; j < p; ++j) {
int sum = 0;
for (int k = @; k < m; ++k) {
sum = sum + a[i][k]*b[k][]];

}
c[i][J] = sum;
}
}
return c;

Introduction to Programming © Dept. CS, UPC

26

Matrix multiplication

// Pre: a is a non-empty nxm matrix, b is a non-empty mxp matrix.
// Returns axb (an nxp matrix).

Matrix multiply(const Matrix& a, const Matrix& b) {
Initialized

int n = a.size();

int m = a[@].size();

int p = b[0@].size();

Matrix c(n, vector<int>(p, 0));

to zero

for (int i = @; i < n; ++i) { The loops can
for (int j = 9; j < p; ++j) { be in any order

for (int k = 0; k < m; ++k) {

c[i][3] += a[i][k]*b[K][]];

}
}
}

return c;

Accumulation

Introduction to Programming © Dept. CS, UPC 27

Matrix multiplication

// Pre: a is a non-empty nxm matrix, b is a non-empty mxp matrix.
// Returns axb (an nxp matrix).

Matrix multiply(const Matrix& a, const Matrix& b) {

int n = a.size();
int m = a[@].size();
int p = b[@].size();

Matrix c(n, vector<int>(p, 90));

for (int j = 0; j < p; ++j) {
for (int k = 0; k < m; ++k) {
for (int 1 =0; i < n; ++i) {
, c[1i][j] += a[i][k]*b[k][]j];
}
}

return c;

Introduction to Programming © Dept. CS, UPC

28

	Introduction to Programming�(in C++)��Multi-dimensional vectors
	Matrices
	Matrices
	n-dimensional vectors
	Sum of matrices
	How are the elements of a matrix visited?
	Sum of matrices (by rows)
	Sum of matrices (by columns)
	Transpose a matrix
	Transpose a matrix
	Is a matrix symmetric?
	Is a matrix symmetric?
	Search in a matrix
	Search in a matrix
	Search in a sorted matrix
	Search in a sorted matrix
	Search in a sorted matrix
	Search in a sorted matrix
	Search in a sorted matrix
	Search in a sorted matrix
	Search in a sorted matrix
	Search in a sorted matrix
	Search in a sorted matrix
	Search in a sorted matrix
	Matrix multiplication
	Matrix multiplication
	Matrix multiplication
	Matrix multiplication

