
Introduction to Programming
(in C++)

Data structures

Jordi Cortadella, Ricard Gavaldà, Fernando Orejas

Dept. of Computer Science, UPC

Outline

• Structures

• Data structure design

Introduction to Programming © Dept. CS, UPC 2

Structures

• Also known as tuples or records in other languages

• All components of a vector have
– the same type (e.g. int)
– a uniform name: vector_name[index]

• Sometimes we want a structured variable to contain
– Components of different types
– Specific meanings – they should have different names

Introduction to Programming © Dept. CS, UPC 3

Example: Person

// A var_person variable contains
// heterogeneous information on a person

struct {
string first_name, last_name;
int age;
bool can_vote;
Email email; // assuming an Email type exists

} var_person;

Introduction to Programming © Dept. CS, UPC 4

first_name, last_name, age, can_vote and email
are the fields of var_person

Example: Person

// A better option: use a type definition

typedef struct {
string first_name, last_name;
int age;
bool can_vote;
Email email;

} Person;

Person var_person;

Introduction to Programming © Dept. CS, UPC 5

Example: Person

// An alternative way of defining a type
// with a struct in C++

struct Person {
string first_name, last_name;
int age;
bool can_vote;
Email email;

};

Person var_person;

Actually, this way of declaring struct types is more common today in C++ (for
reasons outside the scope of this course), even if it is inconsistent with the
syntax of other type definitions (typedef <type_definition> type_name;)

Introduction to Programming © Dept. CS, UPC 6

Structures: another example

struct Address {
string street;
int number;

};

struct Person {
string first_name, last_name;
int age;
Address address;
bool can_vote;

};

Introduction to Programming © Dept. CS, UPC 7

Example: Person

• The dot operator . selects fields of a struct variable, the
same way that the [] operator selects components of a
vector variable

Person p;
cin >> p.first_name >> p.last_name;
cin >> p.address.street;
cin >> p.address.number;
cin >> p.age;
p.can_vote = (p.age >= 18);

Introduction to Programming © Dept. CS, UPC 8

Structures to return results
• Structs can be used in the definition of functions that return

more than one result:

struct Result {
int location;
bool found;

};

Result search(int x, const vector <int>& A);

Introduction to Programming © Dept. CS, UPC 9

Example: rational numbers

• Two components, same type, different meaning

struct Rational {
int num, den;

};

• We could also use a vector<int> of size 2;

• But we must always remember:

“was the numerator in v[0] or in v[1]?”

• It produces uglier code that leads to errors

Introduction to Programming © Dept. CS, UPC 10

Invariants in data structures
• Data structures frequently have some properties (invariants)

that must be preserved by the algorithms that manipulate them.

• Examples:

struct Rational {
int num, den;
// Inv: den > 0

};

struct Clock {
int hours, minutes, seconds;
/ Inv: 0 <= hours < 24,

0 <= minutes < 60,
0 <= seconds < 60 /

};

Introduction to Programming © Dept. CS, UPC 11

Example: rational numbers
// Pre: -
// Returns a + b.

Rational sum(Rational a, Rational b) {

Rational c;
c.num = a.numb.den + b.numa.den;
c.den = a.denb.den;

// c.den > 0 since a.den > 0 and b.den > 0

reduce(c); // simplifies the fraction
return c;

}

Introduction to Programming © Dept. CS, UPC 12

Example: rational numbers
// Pre:
// Post: r is in reduced form.

void reduce(Rational& r) {

int m = gcd(abs(r.num), r.den);
// abs returns the absolute value

r.num = r.num/m;
r.den = r.den/m;

// r.den > 0 is preserved
}

Introduction to Programming © Dept. CS, UPC 13

Structures
• Exercise: using the definition

struct Clock {
int hours; // Inv: 0 <= hours < 24
int minutes; // Inv: 0 <= minutes < 60
int seconds; // Inv: 0 <= seconds < 60

}

write a function that returns the result of incrementing a
Clock by 1 second.

// Pre: -
// Returns c incremented by 1 second.
Clock increment (Clock c);

(Note: the invariants of Clock are assumed in the specification.)

Introduction to Programming © Dept. CS, UPC 14

Structures
Clock increment(Clock c) {

c.seconds = c.seconds + 1;
if (c.seconds == 60) {

c.seconds = 0;
c.minutes = c.minutes + 1;
if (c.minutes == 60) {

c.minutes = 0;
c.hours = c.hours + 1;
if (c.hours == 24) c.hours = 0;

}
}
// The invariants of Clock are preserved
return c;

}

Introduction to Programming © Dept. CS, UPC 15

DATA STRUCTURE DESIGN

Introduction to Programming © Dept. CS, UPC 16

Data structure design
• Up to now, designing a program (or a procedure or a

function) has meant designing an algorithm. The
structure of the data on which the algorithm
operates was part of the problem statement.

However, when we create a program, we often need
to design data structures to store data and
intermediate results.

• The design of appropriate data structures is often
critical:
– to be able to solve the problem
– to provide a more efficient solution

Introduction to Programming © Dept. CS, UPC 17

Data structure design

• A very influential book by Niklaus Wirth on learning
how to program is called precisely:

Algorithms + Data Structures = Programs

• We will study some important data structures in the
next course. However, even for the programs we are
trying to solve in this course, we sometimes need to
know the basics of data structure design.

• Let us see some examples.

Introduction to Programming © Dept. CS, UPC 18

Most frequent letter
• Problem: design a function that reads a text and reports the

most frequent letter in the text and its frequency (as a
percentage). The letter case is ignored. That is:

struct Res {
char letter; // letter is in ‘a’..‘z’
double freq; // 0 <= freq <= 100

};

// Pre: the input contains a text
// Returns the most frequent letter in the text
// and its frequency, as a percentage,
// ignoring the letter case
Res most_freq_letter();

Introduction to Programming © Dept. CS, UPC 19

Most frequent letter
• The obvious algorithm is to sequentially read the characters

of the text and keep a record of how many times we have
seen each letter.

• Once we have read all the text, we compute the letter with
the highest frequency, and report it with the frequency
divided by the text length  100.

• To do this process efficiently, we need fast access to the
number of occurrences of each letter seen so far.

Introduction to Programming © Dept. CS, UPC 20

Most frequent letter
• Solution: keep a vector of length N, where N is the number of

distinct letters. The i-th component contains the number of
occurrences of the i-th letter so far.

• Observation: the problem specification did not mention any
vectors. We introduce one to solve the problem efficiently.

const int N = int('z') - int('a') + 1;
vector<int> occs(N, 0);
int n_letters;

// Inv: n_letters is the number of letters read
// so far, occs[i] is the number of occurrences
// of letter ‘a’ + i in the text read so far

Introduction to Programming © Dept. CS, UPC 21

Most frequent letter
Res most_freq_letter() {

const int N = int('z') - int('a') + 1;
vector<int> occs(N, 0);
int n_letters = 0;
char c;
// n_letters contains the number of letters in the text, and occs[i]
// contains the number of occurrences of letter ‘a’ + i in the text
while (cin >> c) {

if (c >= 'A' and c <= 'Z') c = c - 'A' + 'a';
if (c >= 'a' and c <= 'z') {

++n_letters; ++occs[int(c) - int('a')];
}

}

int imax = 0;
// imax = the index of the highest value in occs[0..i-1]
for (int i = 1; i < N; ++i) {

if (occs[i] > occs[imax]) imax = i;
}
Res r;
r.letter = 'a' + imax;
if (n_letters > 0) r.freq = double(occs[imax])100/n_letters;
else r.freq = 0; // 0% if no letters in the text
return r;

}
Introduction to Programming © Dept. CS, UPC 22

Most frequent word
Problem: design a function that reads a non-empty sequence of
words and reports the word with highest number of occurrences.

struct Result {
string word;
double freq; // 0 < freq <= 100

};

// Pre: the input is a non-empty sequence of words
// Returns the most frequent word in the input
// and its frequency, as a percentage
Result most_freq_word();

Introduction to Programming © Dept. CS, UPC 23

Most frequent word
• The algorithm is similar to the previous one, but with one

complication:

– In the previous problem, we could create a vector with one
entry for each letter, and an easy computation told us where the
component for each letter was (letter c was in component
int(‘c’) - int(’a’)).

– Now, we cannot create a vector with as many components as
possible words.

• Strategy: each component will contain one word with its
frequency. We do not have an immediate way of knowing
where each word w is stored.

Introduction to Programming © Dept. CS, UPC 24

Most frequent word

// structure to store information about
// the occurrences of a word

struct word_occ {
string word; // string representing the word
int occs; // number of occurrences

};

// type to define a vector of word occurrences
typedef vector<word_occ> list_words;

Introduction to Programming © Dept. CS, UPC 25

Most frequent word
Result most_freq_word() {
list_words L;
int total = 0; // The number of words at the input
string w;
while (cin >> w) {
++total;
store(L, w); // If w is not in L, it adds w to L;

// otherwise, its number of occurrences increases
}

int imax = argmax(L); // returns the index of the highest
// component (most frequent word)

Result r;
r.word = L[imax].word;
if (total > 0) r.freq = double(L[imax].occs)100/total;
else r.freq = 0; // 0% in case of no words in the text
return r;

}

Introduction to Programming © Dept. CS, UPC 26

Most frequent word
void store(list_words& L, string w) {

word_occ w_occ;
w_occ.word = w;
w_occ.occs = 1;
L.push_back(w_occ); // add sentinel (assume a new word)
int i = 0;
while (L[i].word != w) ++i;
if (i != L.size() - 1) { // the word already existed

++L[i].occs; // increase number of occurrences
L.pop_back(); // remove the sentinel

}
}

int argmax(const list_words& L) {
int imax = 0;
//Inv: imax = index of highest value in S.words[0..i-1].occs
for (int i = 1; i < L.size(); ++i) {

if (L[i].occs > L[imax].occs) imax = i;
}
return imax;

}
Introduction to Programming © Dept. CS, UPC 27

Pangrams
• A pangram is a sentence containing all the letters in the alphabet.

An English pangram:

The quick brown dog jumps over the lazy fox

A Catalan pangram:

Jove xef, porti whisky amb quinze glaçons d’hidrogen, coi!

• Problem: design a function that reads a sentence and says whether it
is a pangram. That is,

// Pre: the input contains a sentence.
// Returns true if the input sentence is a pangram
// and false otherwise.
bool is_pangram();

Introduction to Programming © Dept. CS, UPC 28

Pangrams

• The algorithm is similar to previous the
problem:

– Use a vector with one position per letter as a data
structure.

– Read the sentence and keep track of the number
of occurrences of each letter.

– Then check that each letter appeared at least
once.

Introduction to Programming © Dept. CS, UPC 29

Pangrams
bool is_pangram() {

const int N = int('z') - int('a') + 1;
vector<bool> appear(N, false);
char c;

// Inv: appear[i] indicates whether the letter
// ‘a’ + i has already appeared in the text.
while (cin >> c) {

if (c >= 'A' and c <= 'Z') c = c – 'A' + 'a';
if (c >= 'a' and c <= 'z') appear[int(c) - int('a')] = true;

}

// Check that all letters appear

for (int i = 0; i < N; ++i) {
if (not appear[i]) return false;

}
return true;

}

Introduction to Programming © Dept. CS, UPC 30

Pangrams

• Exercise: design a variation of the previous
algorithm without the second loop. Stop the
first loop when all the letters have already
appeared in the sentence.

Introduction to Programming © Dept. CS, UPC 31

Brackets
• A number of characters go in pairs, one used to

“open” a part of a text and the other to “close” it.
Some examples are:

() (parenthesis),
[] (square brackets)
{ } (curly brackets)
⟨ ⟩ (angle brackets)
¿ ? (question marks - Spanish)
¡ ! (exclamation marks - Spanish)
“ ” (double quotes)
‘ ’ (single quotes)

Introduction to Programming © Dept. CS, UPC 32

Brackets
The correct use of brackets can be defined by three rules:

1. Every opening bracket is followed in the text by a
matching closing bracket of the same type – though not
necessarily immediately.

2. Vice versa, every closing bracket is preceded in the text
by a matching opening bracket of the same type.

3. The text between an opening bracket and its matching
closing bracket must include the closing bracket of
every opening bracket it contains, and the opening
bracket of every closing bracket it contains
(It’s ok if you need to read this more than once)

Introduction to Programming © Dept. CS, UPC 33

Brackets
• Exercise: design a function that reads a nonempty

sequence of bracket characters of different kinds,
and tells us whether the sequence respects the
bracketing rules

([][{}]¿¡¡!!?)[] answer should be true

(([][{][}]¿¡¡!!?)[] answer should be false

(([][{}]¿¡¡ answer should be false

([]){}) answer should be false

Introduction to Programming © Dept. CS, UPC 34

Brackets
That is, we want:

// Pre: the input contains a nonempty sequence
// of bracket chars
// Returns true if the sequence is correctly
// bracketed, and false otherwise.
bool brackets();

Suppose we use the following functions:

bool is_open_br(char c); // Is c an opening bracket?

bool is_clos_br(char c); // Is c a closing bracket?

char match(char c); // Returns the match of c

Introduction to Programming © Dept. CS, UPC 35

Brackets
• Strategy: keep a vector of unclosed open brackets.

• When we see an opening bracket in the input, we store
it in unclosed (its matching closing bracket should
arrive later).

• When we see a closing bracket in the input, either its
matching opening bracket must be the last element in
unclosed (and we can remove both), or we know the
sequence is incorrect.

• At the end of the sequence unclosed should be empty.

Introduction to Programming © Dept. CS, UPC 36

Brackets
// Pre: the input contains a nonempty sequence of bracket chars
// Returns true if the sequence is correctly bracketed,
// and false otherwise.
bool brackets() {
vector<char> unclosed;
char c;
while (cin >> c) {
if (is_open_br(c)) unclosed.push_back(c);
else if (unclosed.size() == 0) return false;
else if (match(c) != unclosed[unclosed.size()-1]) return false;
else unclosed.pop_back();

}

// Check that no bracket has been left open
return unclosed.size() == 0;

}

Introduction to Programming © Dept. CS, UPC 37

