
Introduction to Programming
(in C++)

Sorting

Jordi Cortadella, Ricard Gavaldà, Fernando Orejas

Dept. of Computer Science, UPC

Sorting

• Let elem be a type with a  operation, which is a
total order

• A vector<elem> v is (increasingly) sorted if

for all i with 0  i  v.size()-1, v[i]  v[i+1]

• Equivalently:

if i  j then v[i]  v[j]

• A fundamental, very common problem: sort v

Order the elements in v and leave the result in v

Introduction to Programming © Dept. CS, UPC 2

Sorting

Introduction to Programming © Dept. CS, UPC 3

9 -7 0 1 -3 4 3 8 -6 8 6 2

• Another common task: sort v[a..b]

9 -7 0 1 -3 4 3 8 -6 8 6 2

9 -7 0 -3 1 3 4 8 -6 8 6 2

a b

a b

-7 -6 -3 0 1 2 3 4 6 8 8 9

Sorting

• We will look at four sorting algorithms:
– Selection Sort

– Insertion Sort

– Bubble Sort

– Merge Sort

• Let us consider a vector v of n elems (n = v.size())
– Insertion, Selection and Bubble Sort make a number of

operations on elems proportional to n2

– Merge Sort is proportional to n·log2n: faster except for
very small vectors

Introduction to Programming © Dept. CS, UPC 4

Selection Sort

• Observation: in the sorted vector, v[0] is the smallest
element in v

• The second smallest element in v must go to v[1]…

• … and so on

• At the i-th iteration, select the i-th smallest element
and place it in v[i]

Introduction to Programming © Dept. CS, UPC 5

Selection Sort

Introduction to Programming © Dept. CS, UPC 6

From http://en.wikipedia.org/wiki/Selection_sort

Selection Sort

• Selection sort keeps this invariant:

Introduction to Programming © Dept. CS, UPC 7

-7 -3 0 1 4 9 ? ? ? ? ? ?

ii-1

this is sorted

and contains the i-1

smallest elements

this may not be sorted…

but all elements here are larger than or

equal to the elements in the sorted part

Selection Sort

// Pre: --
// Post: v is now increasingly sorted

void selection_sort(vector<elem>& v) {
int last = v.size() - 1;
for (int i = 0; i < last; ++i) {

int k = pos_min(v, i, last);
swap(v[k], v[i]);

}
}

Introduction to Programming © Dept. CS, UPC 8

// Invariant: v[0..i-1] is sorted and
// if a < i <= b then v[a] <= v[b]

Note: when i=v.size()-1, v[i] is necessarily the largest element. Nothing to do.

Selection Sort

Introduction to Programming © Dept. CS, UPC 9

// Pre: 0 <= left <= right < v.size()
// Returns pos such that left <= pos <= right
// and v[pos] is smallest in v[left..right]

int pos_min(const vector<elem>& v, int left, int right) {
int pos = left;
for (int i = left + 1; i <= right; ++i) {

if (v[i] < v[pos]) pos = i;
}
return pos;

}

Selection Sort

• At the i-th iteration, Selection Sort makes

– up to v.size()-1-i comparisons among elems

– 1 swap (=3 elem assignments) per iteration

• The total number of comparisons for a vector of size
n is:

(n-1)+(n-2)+…+1= n(n-1)/2 ≈ n2/2

• The total number of assignments is 3(n-1).

Introduction to Programming © Dept. CS, UPC 10

Insertion Sort

• Let us use induction:

– If we know how to sort arrays of size n-1,

– do we know how to sort arrays of size n?

Introduction to Programming © Dept. CS, UPC 11

9 -7 0 1 -3 4 3 8 -6 8 6 2

-7 -6 -3 0 1 3 4 6 8 8 9 2

n-1n-20

-7 -6 -3 0 1 2 3 4 6 8 8 9

Insertion Sort

• Insert x=v[n-1] in the right place in v[0..n-1]

• Two ways:

- Find the right place, then shift the elements

- Shift the elements to the right until one ≤ x is found

Introduction to Programming © Dept. CS, UPC 12

Insertion Sort

Introduction to Programming © Dept. CS, UPC 13

This is sorted This may not be sorted and

we have no idea of what

may be here

• Insertion sort keeps this invariant:

-7 -3 0 1 4 9 ? ? ? ? ? ?

ii-1

Insertion Sort

Introduction to Programming © Dept. CS, UPC 14

From http://en.wikipedia.org/wiki/Insertion_sort

Insertion Sort

// Pre: --
// Post: v is now increasingly sorted
void insertion_sort(vector<elem>& v) {

for (int i = 1; i < v.size(); ++i) {
elem x = v[i];
int j = i;
while (j > 0 and v[j - 1] > x) {

v[j] = v[j - 1];
--j;

}
v[j] = x;

}
}

Introduction to Programming © Dept. CS, UPC 15

// Invariant: v[0..i-1] is sorted in ascending order

Insertion Sort

• At the i-th iteration, Insertion Sort makes up to i
comparisons and up to i+2 assignments of type elem

• The total number of comparisons for a vector of size
n is, at most:

1 + 2 + … + (n-1) = n(n-1)/2 ≈ n2/2

• At the most, n2/2 assignments

• But about n2/4 in typical cases

Introduction to Programming © Dept. CS, UPC 16

Selection Sort vs. Insertion Sort

Introduction to Programming © Dept. CS, UPC 17

2 -1 5 0 -3 9 4

-3 -1 5 0 2 9 4

-3 -1 5 0 2 9 4

-3 -1 0 5 2 9 4

-3 -1 0 2 5 9 4

-3 -1 0 2 4 9 5

-3 -1 0 2 4 5 9

2 -1 5 0 -3 9 4

-1 2 5 0 -3 9 4

-1 2 5 0 -3 9 4

-1 0 2 5 -3 9 4

-3 -1 0 2 5 9 4

-3 -1 0 2 4 5 9

-3 -1 0 2 5 9 4

Selection Sort vs. Insertion Sort

Introduction to Programming © Dept. CS, UPC 18

Evaluation of complex conditions
void insertion_sort(vector<elem>& v) {

for (int i = 1; i < v.size(); ++i) {
elem x = v[i];
int j = i;
while (j > 0 and v[j - 1] > x) {

v[j] = v[j - 1];
--j;

}
v[j] = x;

}
}

• How about: while (v[j – 1] > x and j > 0) ?

• Consider the case for j = 0  evaluation of v[-1] (error !)

• How are complex conditions really evaluated?

Introduction to Programming © Dept. CS, UPC 19

Evaluation of complex conditions

• Many languages (C, C++, Java, PHP, Python) use the
short-circuit evaluation (also called minimal or lazy
evaluation) for Boolean operators.

• For the evaluation of the Boolean expression

expr1 op expr2

expr2 is only evaluated if expr1 does not suffice to
determine the value of the expression.

• Example: (j > 0 and v[j-1] > x)

v[j-1] is only evaluated when j>0

Introduction to Programming © Dept. CS, UPC 20

Evaluation of complex conditions
• In the following examples:

n != 0 and sum/n > avg

n == 0 or sum/n > avg

sum/n will never execute a division by zero.

• Not all languages have short-circuit evaluation. Some of them have
eager evaluation (all the operands are evaluated) and some of them
have both.

• The previous examples could potentially generate a runtime error
(division by zero) when eager evaluation is used.

• Tip: short-circuit evaluation helps us to write more efficient
programs, but cannot be used in all programming languages.

Introduction to Programming © Dept. CS, UPC 21

Bubble Sort

• A simple idea: traverse the vector many times,
swapping adjacent elements when they are in
the wrong order.

• The algorithm terminates when no changes
occur in one of the traversals.

Introduction to Programming © Dept. CS, UPC 22

Bubble Sort

Introduction to Programming © Dept. CS, UPC 23

3

0

5

1

4

2

0

3

5

1

4

2

0

3

5

1

4

2

0

3

1

5

4

2

0

3

1

4

5

2

0

3

1

4

2

5

0

3

1

4

2

5

0

1

3

4

2

5

0

1

3

4

2

5

0

1

3

2

4

5

0

1

3

2

4

5

0

1

3

2

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

The largest element is well-positioned

after the first iteration.

The second largest element is

well-positioned after the second iteration.

The vector is sorted when no changes

occur during one of the iterations.

Bubble Sort

Introduction to Programming © Dept. CS, UPC 24

From http://en.wikipedia.org/wiki/Bubble_sort

Bubble Sort
void bubble_sort(vector<elem>& v) {

bool sorted = false;
int last = v.size() – 1;
while (not sorted) { // Stop when no changes

sorted = true;
for (int i = 0; i < last; ++i) {

if (v[i] > v[i + 1]) {

swap(v[i], v[i + 1]);

sorted = false;
}

}
// The largest element falls to the bottom
--last;

}

}

Introduction to Programming © Dept. CS, UPC 25

Observation: at each pass of the algorithm,

all elements after the last swap are sorted.

Bubble Sort
void bubble_sort(vector<elem>& v) {

int last = v.size() – 1;
while (last > 0) {

int last_swap = 0; // Last swap at each iteration
for (int i = 0; i < last; ++i) {

if (v[i] > v[i + 1]) {

swap(v[i], v[i + 1]);

last_swap = i;
}

}

last = last_swap; // Skip the sorted tail

}

}

Introduction to Programming © Dept. CS, UPC 26

Bubble Sort
• Worst-case analysis:

– The first pass makes n-1 swaps
– The second pass makes n-2 swaps
– …
– The last pass makes 1 swap

• The worst number of swaps:

1 + 2 + … + (n-1) = n(n-1)/2 ≈ n2/2

• It may be efficient for nearly-sorted vectors.

• In general, bubble sort is one of the least efficient
algorithms. It is not practical when the vector is large.

Introduction to Programming © Dept. CS, UPC 27

Merge Sort

• Recall our induction for Insertion Sort:

– suppose we can sort vectors of size n-1,

– can we now sort vectors of size n?

• What about the following:

– suppose we can sort vectors of size n/2,

– can we now sort vectors of size n?

Introduction to Programming © Dept. CS, UPC 28

Merge Sort

Introduction to Programming © Dept. CS, UPC 29

9 -7 0 1 -3 4 3 8 -6 8 6 2

-7 -3 0 1 4 9 3 8 -6 8 6 2

Induction!

-7 -3 0 1 4 9 -6 2 3 6 8 8

Induction!

-7 -6 -3 0 1 2 3 4 6 8 8 9

How do we do this?

Merge Sort

Introduction to Programming © Dept. CS, UPC 30

From http://en.wikipedia.org/wiki/Merge_sort

Merge Sort

• We have seen almost what we need!

// Pre: A and B are sorted in ascending order
// Returns the sorted fusion of A and B

vector<elem> merge(const vector<elem>& A,
const vector<elem>& B);

• Now, v[0..n/2-1] and v[n/2..n-1] are sorted in ascending order.

• Merge them into an auxiliary vector of size n, then copy back to v.

Introduction to Programming © Dept. CS, UPC 31

Merge Sort

Introduction to Programming © Dept. CS, UPC 32

9 -7 0 1 4 -3 3 8

9 -7 0 1 4 -3 3 8

-7 0 1 9 -3 3 4 8

-7 -3 0 1 3 4 8 9

Split

Merge

Merge Sort Merge Sort

Merge Sort

// Pre: 0 <= left <= right < v.size()

// Post: v[left..right] has been sorted increasingly

void merge_sort(vector<elem>& v, int left, int right) {

if (left < right) {

int m = (left + right)/2;

merge_sort(v, left, m);

merge_sort(v, m + 1, right);

merge(v, left, m, right);

}

}

Introduction to Programming © Dept. CS, UPC 33

Merge Sort – merge procedure
// Pre: 0 <= left <= mid < right < v.size(), and
// v[left..mid], v[mid+1..right] are both sorted increasingly
// Post: v[left..right] is now sorted

void merge(vector<elem>& v, int left, int mid, int right) {
int n = right - left + 1;
vector<elem> aux(n);
int i = left;
int j = mid + 1;
int k = 0;
while (i <= mid and j <= right) {

if (v[i] <= v[j]) { aux[k] = v[i]; ++i; }
else { aux[k] = v[j]; ++j; }
++k;

}

while (i <= mid) { aux[k] = v[i]; ++k; ++i; }

while (j <= right) { aux[k] = v[j]; ++k; ++j; }

for (k = 0; k < n; ++k) v[left+k] = aux[k];
}

Introduction to Programming © Dept. CS, UPC 34

Merge Sort

Introduction to Programming © Dept. CS, UPC 35

9 -7 0 1 4 -3 3 8

9 -7 0 1 4 -3 3 8

9 -7 0 1 4 -3 3 8

9 -7 0 1

-7 9 0 1 -3 4 3 8

-7 0 1 9 -3 3 4 8

-7 -3 0 1 3 4 8 9

4 -3 3 8

: merge_sort

: merge

Merge Sort
• How many elem comparisons does Merge Sort do?

– Say v.size() is n, a power of 2

– merge(v,L,M,R) makes k comparisons if k=R-L+1

– We call merge
𝑛

2𝑖
times with R-L=2𝑖

– The total number of comparisons is

𝑖=1

log2 𝑛
𝑛

2𝑖
∙ 2𝑖 = 𝑛 ∙ log2 𝑛

The total number of elem assignments is 2𝑛 ∙ log2 𝑛

Introduction to Programming © Dept. CS, UPC 36

Comparison of sorting algorithms

Introduction to Programming © Dept. CS, UPC 37

Selection

Insertion

Bubble

Merge

Comparison of sorting algorithms
• Approximate number of comparisons:

• Note: it is known that every general sorting
algorithm must do at least n·log2n comparisons.

Introduction to Programming © Dept. CS, UPC 38

n = v.size() 10 100 1,000 10,000 100,000

Insertion,
Selection and
Bubble Sort
(n2/2)

50 5,000 500,000 50,000,000 5,000,000,000

Merge Sort
(n·log2n)

67 1,350 20,000 266,000 3,322,000

Comparison of sorting algorithms

0

20

40

60

80

100

20 40 60 80 100 120 140 160 180 200

Insertion Sort

Selection Sort

Bubble Sort

Merge Sort

Introduction to Programming © Dept. CS, UPC 39

Vector size

Execution time (µs)

For small vectors

Comparison of sorting algorithms

0

0.5

1

1.5

2

2.5

100 200 300 400 500 600 700 800 900 1000

Th
o

u
sa

n
d

s

Insertion Sort

Selection Sort

Bubble Sort

Merge Sort

Introduction to Programming © Dept. CS, UPC 40

Vector size

Execution time (ms)

For medium vectors

Comparison of sorting algorithms

0

10

20

30

40

50

60

70

80

10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

Insertion Sort

Selection Sort

Bubble Sort

Merge Sort

Introduction to Programming © Dept. CS, UPC 41

Vector size

Execution time (secs)

For large vectors

Other sorting algorithms

• There are many other sorting algorithms.

• The most efficient algorithm for general
sorting is quick sort (C.A.R. Hoare).

– The worst case is proportional to n2

– The average case is proportional to n·log2n, but it
usually runs faster than all the other algorithms

– It does not use any auxiliary vectors

• Quick sort will not be covered in this course.

Introduction to Programming © Dept. CS, UPC 42

Sorting with the C++ library

• A sorting procedure is available in the C++ library

• It probably uses a quicksort algorithm

• To use it, include:
#include <algorithm>

• To increasingly sort a vector v (of int’s, double’s,
string’s, etc.), call:

sort(v.begin(), v.end());

Introduction to Programming © Dept. CS, UPC 43

Sorting with the C++ library
• To sort with a different comparison criteria, call

sort(v.begin(), v.end(), comp);

• For example, to sort int’s decreasingly, define:

bool comp(int a, int b) {

return a > b;

}

• To sort people by age, then by name:

bool comp(const Person& a, const Person& b) {

if (a.age == b.age) return a.name < b.name;

else return a.age < b.age;

}

Introduction to Programming © Dept. CS, UPC 44

Sorting is not always a good idea…
• Example: to find the min value of a vector

min = v[0];
for (int i=1; i < v.size(); ++i)

if (v[i] < min) min = v[i];

sort(v);
min = v[0];

• Efficiency analysis:

– Option (1): n iterations (visit all elements).

– Option (2): 2n∙log2n moves with a good sorting
algorithm (e.g., merge sort)

Introduction to Programming © Dept. CS, UPC 45

(1)

(2)

