
Introduction to Programming
(in C++)

Numerical algorithms

Jordi Cortadella, Ricard Gavaldà, Fernando Orejas

Dept. of Computer Science, UPC

Product of polynomials

• Given two polynomials on one variable and real
coefficients, compute their product

(we will decide later how we represent polynomials)

• Example: given x2 + 3x - 1 and 2x - 5, obtain

2x3 - 5x2 + 6x2 - 15x - 2x + 5 = 2x3 + x2 - 17x + 5

Introduction to Programming © Dept. CS, UPC 2

Product of polynomials

• Key point:

Given p(x) = anxn + an-1xn-1 + … + a1x + a0

and q(x) = bmxm + bm-1xm-1 + … + b1x + b0,

what is the coefficient ci of xi in (p*q)(x) ?

• We obtain xi+j whenever we multiply ai xi · bj xj

• Idea: for every i and j, add ai·bj to the (i+j)-th
coefficient of the product polynomial.

Introduction to Programming © Dept. CS, UPC 3

Product of polynomials

• Suppose we represent a polynomial of degree n by a
vector of size n+1.

That is, v[0..n] represents the polynomial

v[n] xn + v[n-1] xn-1 + … + v[1] x + v[0]

• We want to make sure that v[v.size() - 1]  0 so that
degree(v) = v.size() - 1

• The only exception is the constant-0 polynomial.
We’ll represent it by a vector of size 0.

Introduction to Programming © Dept. CS, UPC 4

Product of polynomials

typedef vector<double> Polynomial;

// Pre: --

// Returns pq

Polynomial product(const Polynomial& p,

const Polynomial& q);

Introduction to Programming © Dept. CS, UPC 5

Product of polynomials
Polynomial product(const Polynomial& p, const Polynomial& q) {

// Special case for a polynomial of size 0

if (p.size() == 0 or q.size() == 0) return Polynomial(0);
else {

int deg = p.size() – 1 + q.size() - 1; // degree of pq
Polynomial r(deg + 1, 0);
for (int i = 0; i < p.size(); ++i) {

for (int j = 0; j < q.size(); ++j) {
r[i + j] = r[i + j] + p[i]q[j];

}
}
return r;

}
}

// Invariant (of the outer loop): r = product p[0..i-1]q
// (we have used the coefficients p[0] … p[i-1])

Introduction to Programming © Dept. CS, UPC 6

Sum of polynomials

• Note that over the real numbers,

degree(pq) = degree(p) + degree(q)
(except if p = 0 or q = 0).

So we know the size of the result vector from the
start.

• This is not true for the polynomial sum, e.g.

degree((x + 5) + (-x - 1)) = 0

Introduction to Programming © Dept. CS, UPC 7

Sum of polynomials
// Pre: --
// Returns p+q
Polynomial sum(const Polynomial& p, const Polynomial& q);

int maxdeg = max(p.size(), q.size()) - 1;
int deg = -1;
Polynomial r(maxdeg + 1, 0);

// Inv r[0..i-1] = (p+q)[0..i-1] and
// deg = largest j s.t. r[j] != 0 (or -1 if none exists)
for (int i = 0; i <= maxdeg; ++i) {

if (i >= p.size()) r[i] = q[i];
else if (i >= q.size()) r[i] = p[i];
else r[i] = p[i] + q[i];
if (r[i] != 0) deg = i;

}

Polynomial rr(deg + 1);
for (int i = 0; i <= deg; ++i) rr[i] = r[i];
return rr;

}

Introduction to Programming © Dept. CS, UPC 8

Sum of sparse vectors
• In some cases, problems must deal with sparse vectors or

matrices (most of the elements are zero).

• Sparse vectors and matrices can be represented more
efficiently by only storing the non-zero elements. For
example, a vector can be represented as a vector of pairs
(index, value), sorted in ascending order of the indices.

• Example:

[0,0,1,0,-3,0,0,0,2,0,0,4,0,0,0]

can be represented as

[(2,1),(4,-3),(8,2),(11,4)]

Introduction to Programming © Dept. CS, UPC 9

Sum of sparse vectors

• Design a function that calculates the sum of two
sparse vectors, where each non-zero value is
represented by a pair (index, value):

struct Pair {
int index;
int value;

}

typedef vector<Pair> SparseVector;

Introduction to Programming © Dept. CS, UPC 10

Sum of sparse vectors
// Pre: --
// Returns v1+v2

SparseVector sparse_sum(const SparseVector& v1,
const SparseVector& v2);

// Inv: p1 and p2 will point to the first
// non-treated elements of v1 and v2.
// vsum contains the elements of v1+v2 treated so far.
// psum points to the first free location in vsum.

Introduction to Programming © Dept. CS, UPC 11

• Strategy:
– Calculate the sum on a sufficiently large vector.

– Copy the result on another vector of appropriate size.

Sum of sparse vectors
SparseVector sparse_sum(const SparseVector& v1, const SparseVector& v2) {
SparseVector vsum;
int p1 = 0, p2 = 0;

while (p1 < v1.size() and p2 < v2.size()) {
if (v1[p1].index < v2[p2].index) { // Element only in v1
vsum.push_back(v1[p1]);
++p1;

}
else if (v1[p1].index > v2[p2].index) { // Element only in v2
vsum.push_back(v2[p2]);
++p2;

}
else { // Element in both
Pair p;
p.index = v1[p1].index;
p.value = v1[p1].value + v2[p2].value;
if (p.value != 0) vsum.push_back(p);
++p1; ++p2;

}
}

Introduction to Programming © Dept. CS, UPC 12

Sum of sparse vectors

// Copy the remaining elements of v1

while (p1 < v1.size()) {

vsum.push_back(v1[p1]);

++p1;

}

// Copy the remaining elements of v2

while (p2 < v2.size()) {

vsum.push_back(v2[p2]);

++p2;

}

return vsum;

}

Introduction to Programming © Dept. CS, UPC 13

Root of a continuous function

Bolzano’s theorem:
Let f be a real-valued continuous function.
Let a and b be two values such that a < b and f(a)·f(b) < 0.
Then, there is a value c[a,b] such that f(c)=0.

Introduction to Programming © Dept. CS, UPC 14

a
bc

Root of a continuous function

Design a function that finds a root of a continuous function
f in the interval [a, b] assuming the conditions of Bolzano’s
theorem are fulfilled. Given a precision (), the function
must return a value c such that the root of f is in the
interval [c, c+].

Introduction to Programming © Dept. CS, UPC 15

a
bc

Root of a continuous function

Strategy: narrow the interval [a, b] by half, checking
whether the value of f in the middle of the interval is
positive or negative. Iterate until the width of the
interval is smaller .

Introduction to Programming © Dept. CS, UPC 16

a
b

Root of a continuous function
// Pre: f is continuous, a < b and f(a)f(b) < 0.
// Returns c[a,b] such that a root exists in the
// interval [c,c+].

// Inv: a root of f exists in the interval [a,b]

Introduction to Programming © Dept. CS, UPC 17

a
b

Root of a continuous function

double root(double a, double b, double epsilon) {

while (b – a > epsilon) {

double c = (a + b)/2;

if (f(a)f(c) <= 0) b = c;

else a = c;

}

return a;

}

Introduction to Programming © Dept. CS, UPC 18

Root of a continuous function

// A recursive version

double root(double a, double b, double epsilon) {

if (b – a <= epsilon) return a;

double c = (a + b)/2;

if (f(a)f(c) <= 0) return root(a,c,epsilon);

else return root(c,b,epsilon);

}

Introduction to Programming © Dept. CS, UPC 19

Barcode

• A barcode is an optical machine-readable
representation of data. One of the most popular
encoding systems is the UPC (Universal Product Code).

• A UPC code has 12 digits. Optionally, a check digit can
be added.

Introduction to Programming © Dept. CS, UPC 20

Barcode
• The check digit is calculated as follows:

1. Add the digits in odd-numbered positions (first, third,
fifth, etc.) and multiply by 3.

2. Add the digits in the even-numbered positions (second,
fourth, sixth, etc.) to the result.

3. Calculate the result modulo 10.
4. If the result is not zero, subtract the result from 10.

• Example: 380006571113

 (3+0+0+5+1+1)3 = 30
 8+0+6+7+1+3 = 25
 (30+25) mod 10 = 5
 10 – 5 = 5

Introduction to Programming © Dept. CS, UPC 21

Barcode

• Design a program that reads a sequence of 12-digit
numbers that represent UPCs without check digits
and writes the same UPCs with the check digit.

• Question: do we need a data structure to store
the UPCs?

• Answer: no, we only need a few auxiliary variables.

Introduction to Programming © Dept. CS, UPC 22

Barcode
• The program might have a loop treating a UPC at each

iteration. The invariant could be as follows:

// Inv: all the UPCs of the treated codes
// have been written.

• At each iteration, the program could read the UPC
digits and, at the same time, write the UPC and
calculate the check digit. The invariant could be:

// Inv: all the treated digits have been
// written. The partial calculation of
// the check digit has been performed
// based on the treated digits.

Introduction to Programming © Dept. CS, UPC 23

Barcode
// Pre: the input contains a sequence of UPCs without check digits.
// Post: the UPCs at the input have been written with their check digits.

int main() {
char c;
while (cin >> c) {

cout << c;
int d = 3(int(c) - int('0')); // first digit in an odd location

for (int i = 2; i <= 12; ++i) {
cin >> c;
cout << c;
if (i%2 == 0) d = d + int(c) - int('0');
else d = d + 3(int(c) - int('0'));

}
d = d%10;
if (d > 0) d = 10 – d;
cout << d << endl;

}
}

Introduction to Programming © Dept. CS, UPC 24

