
Introduction to Programming
(in C++)

Conclusions

Jordi Cortadella, Ricard Gavaldà, Fernando Orejas

Dept. of Computer Science, UPC



Why is programming hard?

• Part of the difficulty is that we have many 
requirements.

• Our programs must be:

– Useful

– Correct

– Efficient

– Easy to understand, modify and extend

– Cheap

– … and more

Introduction to Programming © Dept. CS, UPC 2



Useful programs 

Programs must solve the user’s problem, 
not do what the programmer knows how to do.
The user must know exactly what the program does.

Specification is the key:
• A contract between the user and the programmer
• Must be unambiguous and complete
• In this course: pre-condition + post-condition

Rule: Don’t decide in the code what must be 
decided in the specification

Introduction to Programming © Dept. CS, UPC 3



Correct programs 

A program is correct if it behaves according to its 
specification on all inputs that satisfy the 
precondition!

Note: “correct” does not even mean anything if we 
do not have a specification!

Rule: 

5 minutes of thinking 

= 

1 hour of debugging

Introduction to Programming © Dept. CS, UPC 4



Correct programs 

Good programming methodology helps to create 
correct programs: 

• Start from the specification, not from your idea.
• Divide a complex problem into smaller pieces 

(procedures and functions). Carefully specify each 
one.

• Use induction to guide your design of loops and 
your use of recursion. How do I solve problems of 
size n, if I could solve problems of size m<n?

• Invariants are a way to express the inductive 
hypothesis behind a loop.

Introduction to Programming © Dept. CS, UPC 5



Correct programs 

Rule: work hard to explain why your program is 
as specified, not what it does line-by-line.

Example: write a program to compute log2(n)

int n;

cin >> n;
int m = 0;
while (n > 1) { n = n/2; ++m; }

“The program reads a number n and then 
divides it by 2 and increments m until n<=1.” 
Yes, we can see that. Where’s log2?

Introduction to Programming © Dept. CS, UPC 6



Correct programs 

Rule: work hard to explain why your program is 
as specified, not what it does line-by-line

Example: write a program to compute log2(n)

int n;
cin >> n;
int m = 0;
while (n > 1) { n = n/2; ++m; }

“If N is the value read for n, at all times we have 
n = N / 2m. Therefore, when n=1, N / 2m = 1,  so 
m = log2(N).” Ah!

Introduction to Programming © Dept. CS, UPC 7



Efficient programs 

• A problem may have many correct solutions,

• but some are more efficient than others (in time, 
memory and communication, for example).

• Choosing the right algorithms and data structures
is the key to efficiency.

• To discuss efficiency: consider the time or 
memory used as a function of the input “size”.  
See how fast that function grows

Introduction to Programming © Dept. CS, UPC 8



Programs are mathematical objects

• Like mathematical formulas.

• One can rigorously prove that they satisfy certain 
properties:

– they satisfy a (mathematical) specification

– they use so much time or memory.

• Incorrect software in critical tasks may cause 
disasters and loss of human lives.

Introduction to Programming © Dept. CS, UPC 9



Easy to understand, modify and extend

Many programs need to be modified because:

• They were incomplete or incorrect: maintain

• They are used as a starting point for another 
program: reuse

• We need to add functionalities to them: extend

This may be easy or hard, depending on how we 
wrote the program

Introduction to Programming © Dept. CS, UPC 10



Easy to understand, modify and extend

Documentation:

• Comments, pre-/post-conditions, invariants 

• Manual, technical specs (for large programs)

• Coding conventions, good naming

Structure:

• Procedures/functions with clear meanings

• No fancy language-dependent constructions

Introduction to Programming © Dept. CS, UPC 11



Programming has limits

Not all problems that can be specified can be solved

• Some specifications make no sense

// Pre:  none
// Post: write an integer i such that i*i < 0

• But there are unsolvable problems for which 
– a well-defined answer always exists

– yet no algorithm can find the answer every time

• Some problems are intractable, they admit 
algorithms but only very inefficient ones

Introduction to Programming © Dept. CS, UPC 12



Programming has limits
• The string

“int main() { cout << “Hello world!” << endl; }”

is a C++ program that  halts, and the string 

“int main() { while (true) { } }” 

is a C++ program that does not halt.

• Consider the specification:

// Pre:  string s is a legal (compiling) C++ program
// Post: returns true if the program s halts on the 
//       empty input, and false otherwise

bool halts(string s);

• Such an algorithm would be very useful
• However, it is a deep result that

THERE IS NO PROGRAM   halts() to satisfy this specification

Introduction to Programming © Dept. CS, UPC 13



Quotes
• “Computer programming is an art, because it applies accumulated 

knowledge to the world, because it requires skill and ingenuity, and 
especially because it produces objects of beauty. A programmer 
who subconsciously views himself as an artist will enjoy what he 
does and will do it better.” (Donald Knuth)

• “There are two ways of constructing a software design.  One way is 
to make it so simple that there are obviously no deficiencies. And 
the other way is to make it so complicated that there are no 
obvious deficiencies.” (C.A.R. Hoare)

• “Controlling complexity is the essence of computer programming.” 
(Brian Kernigan) 

• “The trouble with programmers is that you can never tell what a 
programmer is doing until it’s too late.” (Seymour Cray) 

© Dept. CS, UPC 14Introduction to Programming



Quotes

• “The question of whether computers can think is like the 
question of whether submarines can swim.”
(Edsger W. Dijkstra)

• “Programmers are in a race with the Universe to create bigger 
and better idiot-proof programs, while the Universe is trying 
to create bigger and better idiots.  So far the Universe is 
winning.” (Rich Cook) 

• “A great lathe operator commands several times the wage of 
an average lathe operator, but a great writer of software code 
is worth 10,000 times the price of an average software writer.” 
(Bill Gates) 

Introduction to Programming © Dept. CS, UPC 15


