Introduction to Programming (in C++)

Loops

Jordi Cortadella, Ricard Gavaldà, Fernando Orejas
Dept. of Computer Science, UPC

Example

- Assume the following specification:

Input: read a number $\mathrm{N}>0$
Output: write the sequence 123 ... N
(one number per line)

- This specification suggests some algorithm with a repetitive procedure.

The while statement

- Syntax:
while (\langle condition \rangle) statement;
(the condition must return a Boolean value)
- Semantics:
- Similar to the repetition of an if statement
- The condition is evaluated:
- If true, the statement is executed and the control returns to the while statement again.
- If false, the while statement terminates.

Write the numbers 1...N

// Input: read a number $\mathrm{N}>0$
// Output: write the numbers 1...N (one per line)
int main() \{ int N;
cin >> N;
int $\mathbf{i}=1$;
while (i <= N) \{
// The numbers 1..i-1 have been written cout << i << endl;
i = i + 1;
\}
\}

Product of two numbers

//Input: read two non-negative numbers x and y //Output: write the product x*y
// Constraint: do not use the * operator
// The algorithm calculates the sum x+x+x+...+x (y times)

```
int main() {
    int x, y;
    cin >> x >> y; // Let x=A, y=B
    int p = 0;
    // Invariant: A*B = p + x*y
    while (y > 0) {
        p = p + x;
        y = y - 1;
    }
    cout << p << endl;
}
```


A quick algorithm for the product

- Let p be the product $x * y$
- Observation
- If y is even, $p=(x * 2) *(y / 2)$
- If y is odd, $\quad p=x *(y-1)+x$ and $(y-1)$ becomes even
- Example: $17 * 38=646$

x	y	Δp
17	38	
34	19	
34	18	34
68	9	
68	8	68
136	4	
272	2	
544	1	
544	0	544
		646

A quick algorithm for the product

```
int main() {
    int x, y;
    cin >> x >> y; // Let x=A, y=B
    int p = 0;
    // Invariant: A*B = p + x*y
    while (y > 0) {
        if (y%2 == 0) {
        x = x*2;
        y = y/2;
        }
        else {
        p = p + x;
        y = y - 1;
        }
    }
    cout << p << endl;
}
```

x	y	p
17	38	0
34	19	0
34	18	34
68	9	34
68	8	102
136	4	102
272	2	102
544	1	102
544	0	646

Why is the quick product interesting?

- Most computers have a multiply instruction in their machine language.
- The operations $x * 2$ and $y / 2$ can be implemented as 1-bit left and right shifts, respectively. So, the multiplication can be implemented with shift and add operations.
- The quick product algorithm is the basis for hardware implementations of multipliers and mimics the paper-and-pencil method learned at school (but using base 2).

Quick product in binary: example

$77 \times 41=3157$

110001010101

Counting a's

- We want to read a text represented as a sequence of characters that ends with ".
- We want to calculate the number of occurrences of the letter 'a'
- We can assume that the text always has at least one character (the last ".)
- Example: the text

Programming in C++ is amazingly easy!.

has 4 a's

Counting a's

```
// Input: sequence of characters that ends with '.'
// Output: number of times 'a' appears in the
// sequence
int main() \{
        char c;
        cin >> c;
        int count = 0;
        // Inv: count is the number of a's in the visited
        // prefix of the sequence. c contains the next
    // non-visited character
        while (c != '.') \{
            if ( \(\mathrm{c}==\) 'a') count = count + 1;
        cin >> c ;
    \}
    cout << count << endl;
\}
```


Counting digits

- We want to read a non-negative integer and count the number of digits (in radix 10) in its textual representation.
- Examples

$$
\begin{aligned}
8713105 & \rightarrow 7 \text { digits } \\
156 & \rightarrow 3 \text { digits } \\
8 & \rightarrow 1 \text { digit } \\
0 & \rightarrow 1 \text { digit (note this special case) }
\end{aligned}
$$

Counting digits

```
// Input: a non-negative number N
// Output: number of digits in N (0 has 1 digit)
int main() {
    int N;
    cin >> N;
    int ndigits = 0;
    // Inv: ndigits contains the number of digits in the
    // tail of the number, N contains the remaining
    // part (head) of the number
    while (N > 9) {
        ndigits = ndigits + 1;
        N = N/10; // extracts one digit
    }
    cout << ndigits + 1 << endl;
}
```


Euclid's algorithm for gcd

- Properties
$-\operatorname{gcd}(a, a)=a$
- If $a>b$, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(a-b, b)$
- Example

a	b
114	42
72	42
30	42
30	12
18	12
6	12
6	6

$\operatorname{gcd}(114,42)$

Euclid's algorithm for gcd

// Input: read two positive numbers (a and b)
// Output: write gcd(a,b)

```
int main() {
    int a, b;
    cin >> a >> b; // Let a=A, b=B
    // gcd(A,B) = gcd(a,b)
    while (a != b) {
        if (a > b) a = a - b;
        else b = b - a;
    }
    cout << a << endl;
}
```


Faster Euclid's algorithm for gcd

- Properties
$-\operatorname{gcd}(a, 0)=a$
- If $b>0$ then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$
- Example

a	b
114	42
42	30
30	12
12	6
6	0

Faster Euclid's algorithm for gcd

// Input: read two positive numbers (a and b)
// Output: write gcd(a,b)

```
int main() {
```

 int a, b;
 cin >> \(a\) >> \(b ; / /\) Let \(a=A, b=B\)
 \(/ / \operatorname{gcd}(A, B)=\operatorname{gcd}(a, b)\)
 while (b != 0) \{
 int \(\mathrm{r}=\mathrm{a} \% \mathrm{~b}\);
 a = b;
 b = r; // Guarantees b < a (loop termination)
 \}
 cout << a << endl;
 \}

Efficiency of Euclid's algorithm

- How many iterations will Euclid's algorithm need to calculate $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$ in the worst case (assume $\mathrm{a}>\mathrm{b}$)?
- Subtraction version: a iterations
(consider $\operatorname{gcd}(1000,1)$)
- Modulo version: $\leq 5 * d(b)$ iterations, where $d(b)$ is the number of digits of b represented in base 10 (proof by Gabriel Lamé, 1844)

Solving a problem several times

- In many cases, we might be interested in solving the same problem for several input data.
- Example: calculate the gcd of several pairs of natural numbers.

Input	Output
1256	4
3030	30
1024896	128
10099	1
1751	17

Solving a problem several times

// Input: several pairs of natural numbers at the input
// Output: the gcd of each pair of numbers written at the output
int main() \{
int $a, b ;$
// Inv: the gcd of all previous pairs have been
// calculated and written at the output while (cin >> a >> b) \{
// A new pair of numbers from the input

Calculate $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$ and write the result into cout

\}
\}

Solving a problem several times

// Input: several pairs of natural numbers at the input
// Output: the ged of each pair of numbers written at the output
int main() \{
int $a, b ;$
// Inv: the god of all previous pairs have been
// calculated and written at the output
while (ain >> a >> b) \{
// A new pair of numbers from the input while (b != 0) \{
int $\mathrm{r}=\mathrm{a} \% \mathrm{~b}$;
$\mathrm{a}=\mathrm{b}$;
b = r;
\}
cont << a << end;
\}
\}

Prime number

- A prime number is a natural number that has exactly two distinct divisors: 1 and itself. (Comment: 1 is not prime)
- Write a program that reads a natural number (N) and tells whether it is prime or not.
- Algorithm: try all potential divisors from 2 to $\mathrm{N}-1$ and check whether the remainder is zero.

Prime number

```
// Input: read a natural number N>0
// Output: write "is prime" or "is not prime" depending on
// the primality of the number
int main() {
    int N;
    cin >> N;
    int divisor = 2;
    bool is_prime = (N != 1);
    // 1 is not prime, 2 is prime, the rest enter the loop (assume prime)
    // is_prime is true while a divisor is not found
    // an\overline{d}\mathrm{ becomes false as soon as the first divisor is found}
    while (divisor < N) {
        if (N%divisor == 0) is_prime = false;
        divisor = divisor + 1;
    }
    if (is_prime) cout << "is prime" << endl;
    else cout << "is not prime" << endl;
}
```


Prime number

- Observation: as soon as a divisor is found, there is no need to check divisibility with the rest of the divisors.
- However, the algorithm tries all potential divisors from 2 to $\mathrm{N}-1$.
- Improvement: stop the iteration when a divisor is found.

Prime number

```
// Input: read a natural number N>0
// Output: write "is prime" or "is not prime" depending on
// the primality of the number
int main() {
    int N;
    cin >> N;
    int divisor = 2;
    bool is_prime = (N != 1);
    while (is_prime and divisor < N) {
        is_prime = N%divisor != 0;
        divisor = divisor + 1;
    }
    if (is_prime) cout << "is prime" << endl;
    else cout << "is not prime" << endl;
}
```


Prime number: doing it faster

- If N is not prime, we can find two numbers, a and b, such that:

$$
N=a * b, \quad \text { with } 1<a \leq b<N
$$

and with the following property: $\quad a \leq \sqrt{N}$

- There is no need to find divisors up to N-1. We can stop much earlier.
- Note: $a \leq \sqrt{N}$ is equivalent to $a^{2} \leq N$

Prime number: doing it faster

```
// Input: read a natural number N>0
// Output: write "is prime" or "is not prime" depending on
// the primality of the number
int main() {
    int N;
    cin >> N;
    int divisor = 2;
    bool is_prime = (N != 1);
    while (is_prime and divisor*divisor <= N) {
        is_prime = N%divisor != 0;
        divisor = divisor + 1;
    }
    if (is_prime) cout << "is prime" << endl;
    else cout << "is not prime" << endl;
}
```


Is there any real difference?

Iterations

In real time ($\mathrm{N}=2110454939$)

> time prime_slow < number
is prime
10.984u 0.004s 0:11.10 98.9\%
> time prime_fast < number is prime
0.004u 0.000s 0:00.00 0.0\%

The for statement

- Very often we encounter loops of the form:

$$
\begin{aligned}
& \mathbf{i}=N ; \\
& \text { while (i <= M) \{ } \\
& \quad \text { do_something; } \\
& \quad \mathbf{i}=\mathbf{i}+1 ;
\end{aligned}
$$

- This can be rewritten as:
for ($\mathbf{i}=N$; $\mathbf{i}<=M$; $\mathbf{i}=\mathbf{i}+1$) \{ do_something;
\}

The for statement

－In general
for（〈S＿init $\rangle ;$＜condition $\left.\rangle ;\left\langle S _i t e r\right\rangle\right)\left\langle S _b o d y\right\rangle ;$ is equivalent to：

S＿init；
while（〈condition〉）\｛
〈S＿body〉；〈S＿iter〉；
$\}$

Writing the numbers in an interval

// Input: read two integer numbers, N and M , // such that $\mathrm{N}<=\mathrm{M}$.
// Output: write all the integer numbers in the // interval [N,M]
int main() \{
int N, M;
cin >> N >> M;
for (int $\mathbf{i}=\mathrm{N}$; $\mathrm{i}<=\mathrm{M}$; ++i) cout << $\mathbf{i} \ll$ endl;
\}

Calculate x^{y}

// Input: read two integer numbers,
x and y, such that $y>=0$
// Output: write x^{y}
int main() \{
int $x, y ;$
cin >> x >> y;
int $p=1 ;$
for (int $i=0 ; i<y ;++i) p=p * x ;$ cout << p << endl;
\}

Drawing a triangle

- Given a number n (e.g. $n=6$), we want to draw this triangle:
*
* *

* * * * *
* * * * * *

Drawing a triangle

// Input: read a number n > 0
// Output: write a triangle of size n

```
int main() {
    int n;
    cin >> n;
    // Inv: the rows 1..i-1 have been written
    for (int i = 1; i <= n; ++i) {
        // Inv: '*' written j-1 times in row i
        for (int j = 1; j <= i; ++j) cout << '*’;
        cout << endl;
    }
}
```


Perfect numbers

- A number $\mathrm{n}>0$ is perfect if it is equal to the sum of all its divisors except itself.
- Examples
-6 is a perfect number $(1+2+3=6)$
-12 is not a perfect number $(1+2+3+4+6 \neq 12)$
- Strategy
- Keep adding divisors until the sum exceeds the number or there are no more divisors.

Perfect numbers

```
// Input: read a number n > 0
// Output: write a message indicating
// whether it is perfect or not
int main() {
    int n;
    cin >> n;
    int sum = 0, d = 1;
    // Inv: sum is the sum of all divisors until d-1
    while (d <= n/2 and sum <= n) {
        if (n%d == 0) sum += d;
        d = d + 1;
    }
    if (sum == n) cout << "is perfect" << endl;
    else cout << "is not perfect" << endl;
}
```


Perfect numbers

- Would the program work using the following loop condition?

while (d <= n/2 and sum < n)

- Can we design a more efficient version without checking all the divisors until $n / 2$?
- Clue: consider the most efficient version of the program to check whether a number is prime.

