
Introduction to Programming
(in C++)

Advanced Sequence Processing

Lluís Padró
Dept. of Computer Science, UPC

Outline

● Sliding window strategy: Processing sequence
elements that depend on neighbors

– Treat-all algorithms

– Search algorithms

• Sequences of sequences

– Treat-all sequences, treat-all elements in each.

– Search sequence, treat-all elements in each.

– Search sequence, search element in each.

– Treat-all sequences, search element in each.

Introduction to Programming © Dept. CS, UPC 2

Sliding Window Strategy

Sliding Window Strategy

• Write a program that counts the number of
consecutive ascending pairs in a non-empty
sequence of integers.

Introduction to Programming © Dept. CS, UPC 4

// Pre: a non-empty sequence of integers is
// ready to be read at cin

// Post: the number of ascending intervals from one element

// to the next has been written to the output

Assume the input sequence is: 3 12 8 19 25 15

// Invariant: m is the count of ascending intervals found
// so far in the sequence.

elem: 3 12 8 19 25 15

count: 0 1 1 2 3 3

Sliding Window Strategy

Introduction to Programming © Dept. CS, UPC 5

3 12 8 19 25 15

● Keep a “window” that checks two consecutive
elements, and slides one position at a time:

3 12 8 19 25 15

3 12 8 19 25 15

3 12 8 19 25 15

3 12 8 19 25 15

Iteration 1. count = 1

Iteration 2. count = 1

Iteration 3. count = 2

Iteration 4. count = 3

Iteration 5. count = 3

Sliding Window Strategy

Introduction to Programming © Dept. CS, UPC 6

3 12 8 19 25 15

● The “window” can be emulated with two variables,
one containint the current value, and another
containing the previous value.

prev curr

Iteration 1. prev=3, curr=12

Sliding Window Strategy

Introduction to Programming © Dept. CS, UPC 7

3 12 8 19 25 15

● The “window” can be emulated with two variables,
one containint the current value, and another
containing the previous value.

prev curr

Iteration 2. prev=12, curr=8

Sliding Window Strategy

Introduction to Programming © Dept. CS, UPC 8

3 12 8 19 25 15

● The “window” can be emulated with two variables,
one containint the current value, and another
containing the previous value.

prev curr

Iteration 3. prev=8, curr=19

Sliding Window Strategy

Introduction to Programming © Dept. CS, UPC 9

3 12 8 19 25 15

● The “window” can be emulated with two variables,
one containint the current value, and another
containing the previous value.

prev curr

Iteration 4. prev=19, curr=25

Sliding Window Strategy

Introduction to Programming © Dept. CS, UPC 10

3 12 8 19 25 15

● The “window” can be emulated with two variables,
one containint the current value, and another
containing the previous value.

prev curr

Iteration 4. prev=19, curr=25

ETC...

Sliding Window Strategy

Introduction to Programming © Dept. CS, UPC 11

● We use a normal treat-all algorithm, but we
introduce a new variable to keep the value of
the previous element.

● Special attention must be paid to
initialization:
 What is the element previous to the first ?

Count ascending consecutive pairs

int main() {
 int c = 0; // ascending pair counter

 int elem; // current element
 int prev; // previous element
 cin >> prev;
 while (cin >> elem) {
 // if ascending pair, count it.
 if (elem > prev) c = c + 1;
 // prepare for next iteration
 prev = elem;
 }

 cout << c << endl;
}

Introduction to Programming © Dept. CS, UPC 12

Sliding Window Strategy

Introduction to Programming © Dept. CS, UPC 13

● Windows may be of any size (2, 3, 4, …)

● We can do searches as well as treat-all
algorithms.

Sliding Window Strategy

Introduction to Programming © Dept. CS, UPC 14

Write a program that checks whether a
sequence of characters ending with a dot
contains the combination “hola”.

fgsdholasfgg.

Sliding Window Strategy

Introduction to Programming © Dept. CS, UPC 15

● We need a window of size 4 (i.e. 4 variables: 1 for
current character, 3 for previous elements)

● Search algorithm: If the combination is found,
there is no need to keep checking.

fgsdholasfgg.
fgsdholasfgg.
fgsdholasfgg.
fgsdholasfgg.

fgsdholasfgg.

Sliding Window Strategy

Introduction to Programming © Dept. CS, UPC 16

● 4 variables for the window: a,b,c,d
● Advance one position at a time

fgsdholasfgg.
a b c d

Sliding Window Strategy

Introduction to Programming © Dept. CS, UPC 17

● 4 variables for the window: a,b,c,d
● Advance one position at a time

fgsdholasfgg.
a b c d

Sliding Window Strategy

Introduction to Programming © Dept. CS, UPC 18

● 4 variables for the window: a,b,c,d
● Advance one position at a time

fgsdholasfgg.
a b c d

Sliding Window Strategy

Introduction to Programming © Dept. CS, UPC 19

● 4 variables for the window: a,b,c,d
● Advance one position at a time

fgsdholasfgg.
a b c d

Sliding Window Strategy

Introduction to Programming © Dept. CS, UPC 20

● 4 variables for the window: a,b,c,d
● Advance one position at a time

fgsdholasfgg.
a b c d

Sliding Window Strategy

Introduction to Programming © Dept. CS, UPC 21

● We use a normal search algorithm, but we
introduce three new variables to keep the value
of the previous elements.

● Special attention must be paid to initialization:
 What are the 3 elements previous to the first ?

The sequence may have less than 4 characters!!

Find ‘hola’ in a sequence of characters
int main() {

 char a,b,c; // 3 previous elements

 char d; // current element

 // init previous elements to something inocuous

 a=‘_‘; b=‘_‘; c=‘_‘;

 cin >> d;

 bool found = false;

 while (not found and d != ‘.’) {

 found = (a==’h’ and b==’o’ and
 c==’l’ and d==’a’)

 // prepare for next iteration

 a = b; b = c; c = d;

 cin >> d;

 }

 if (found) cout << “yes” << endl;

 else cout << “no” << endl;

}
Introduction to Programming © Dept. CS, UPC 22

Sliding Window Strategy

Introduction to Programming © Dept. CS, UPC 23

● Similar problems:
● Compute the maximum difference between one

element and the next in a sequence of integers. (treat-
all, window=2)

● Compute length of longest sequence of consecutive
repetitions of the same word. (treat-all, window=2)

● Find out whether a sequence of integers is ascending.
(search, window=2)

● Compute maximum ‘peak’ in a sequence of integers
(treat-all, window=3)

Sequences of Sequences

Sequences of sequences

• Single process sequence is applied to a collection of
sequences

• Example: Given a several sequences of integers, each
ended in zero, compute the maximum of each
sequence.

Introduction to Programming © Dept. CS, UPC 25

3 5 8 1 10 4 9 0
12 5 6 1 7 0
9 22 31 1 1 5 0
1 0

Input

10
12
31
1

Output

Sequences of sequences

• Single process sequence is applied to a collection of
sequences plus an overall computation.

• Example: Given a several sequences of integers, each
ended in zero, compute the maximum of each
sequence and the sum of the maximums.

Introduction to Programming © Dept. CS, UPC 26

3 5 8 1 10 4 9 0
12 5 6 1 7 0
9 22 31 1 1 5 0
1 0

Input

10
12
31
1
Sum=54

Output

Sequences of sequences

• When dealing with sequences of sequences, two
things must be taken into account:

– Task Structure
● We check all sequences or we stop when a certain

sequence is found ?
● Inside each sequence, we check all elements, or we

stop when a certain element is found ?

– Input Structure
● Each sequence ends with a marking element or we

know the number of elements it contains?
● We read sequences until there are no more, or we

know the number of sequences to read?
Introduction to Programming © Dept. CS, UPC 27

Sequences of sequences

• Task Structure:
– We may need to check all sequences (treat-all

sequences), or stop when one with certain
properties is found (sequence search)

– Inside each sequence, we may need to check all
elements (treat-all elements), or stop when one
with certain properties is found (element search)

4 possible combinations

Introduction to Programming © Dept. CS, UPC 28

Sequences of sequences: Task Structure

• 4 possible combinations:

1. Treat-all sequences, treat-all elements

2. Search sequence, treat-all elements

3. Search sequence, search element

4. Treat-all sequences, search elements

Introduction to Programming © Dept. CS, UPC 29

Introduction to Programming © Dept. CS, UPC 30

● Example problems:
● Given several sequences of integers, count the average amount

of prime numbers per sequence (treat-all sequences, treat-all
elements).

● Given several sequences of char, check whether one of the
sequences contains the char combination “hola” an even
number of times (search sequence, treat-all elements).

● Given several sequences of integers, find out which is the first
sequence that contains a prime number (search sequence,
search element).

● Given several sequences of integers, output the first position in
each sequence that contains a prime number (treat-all
sequences, search element)

Sequences of sequences: Task Structure

Sequences of sequences: Task Structure

• 4 possible combinations:

1. Treat-all sequences, treat-all elements

2. Search sequence, treat-all elements

3. Search sequence, search element

4. Treat-all sequences, search elements

Introduction to Programming © Dept. CS, UPC 31

Introduction to Programming © Dept. CS, UPC 32

int main() {
 int sum = 0;
 int x;
 while (cin >> x) {
 int m = x;
 while (x != 0) {
 if (x > m) m = x;
 cin >> x
 }
 cout << m << endl;
 sum = sum + m;
 }
 cout << sum << endl;
}

Example: Compute the
maximum of each
sequence, and the sum
of all maximums.

Each sequence ends in
zero and has at least
one element.

1. Treat-all sequences, treat-all elements

12 10 8 7 5 0
1 22 0
4 0
3 -4 1 0

Introduction to Programming © Dept. CS, UPC 33

Main loop reads the
first element of each
sequence, until there
are no more
sequences.

Each iteration
processes a whole
sequence.

int main() {
 int sum = 0;
 int x;
 while (cin >> x) {
 int m = x;
 while (x != 0) {
 if (x > m) m = x;
 cin >> x
 }
 cout << m << endl;
 sum = sum + m;
 }
 cout << sum << endl;
}

Compute maximum of current
sequence, until zero is found.
Store result in m.

1. Treat-all sequences, treat-all elements

int main() {
 int sum = 0;
 int x;
 while (cin >> x) {
 int m = x;
 while (x != 0) {
 if (x > m) m = x;
 cin >> x
 }
 cout << m << endl;
 sum = sum + m;
 }
 cout << sum << endl;
}

Introduction to Programming © Dept. CS, UPC 34

Inner loop reads the
rest of elements of
each sequence, until
the marking zero is
found.

Each iteration
processes one element
and stores the
maximum of seen
elements.

int m = x;
while (x != 0) {
 if (x > m) m = x;
 cin >> x
}

1. Treat-all sequences, treat-all elements

Sequences of sequences: Task Structure

• 4 possible combinations:

1. Treat-all sequences, treat-all elements

2. Search sequence, treat-all elements

3. Search sequence, search element

4. Treat-all sequences, search elements

Introduction to Programming © Dept. CS, UPC 35

Introduction to Programming © Dept. CS, UPC 36

int main() {
 bool found = false;
 int x;
 while (cin >> x and not found) {
 int s = 0;
 while (x != 0) {
 s = s + x;
 cin >> x;
 }
 found = (s > 50);
 }
 if (found) cout << “yes” << endl;
 else cout << “no” << endl;
}

Example: Check
if any of the
sequences sums
over 50.

Each sequence
ends in zero.

2. Search sequence, treat-all elements

12 10 -7 5 0
1 22 0
4 0
3 -4 1 0

int main() {
 bool found = false;
 int x;
 while (cin >> x and not found) {
 int s = 0;
 while (x != 0) {
 s = s + x;
 cin >> x;
 }
 found = (s > 50);
 }
 if (found) cout << “yes” << endl;
 else cout << “no” << endl;
}

Introduction to Programming © Dept. CS, UPC 37

Main loop reads
the first element
of each sequence,
until there are no
more sequences,
or a matching
sequence is found

Each iteration
processes a whole
sequence.

Compute sum of current
sequence, until zero is found.
Store result in s.

2. Search sequence, treat-all elements

int main() {
 bool found = false;
 int x;
 while (cin >> x and not found) {
 int s = 0;
 while (x != 0) {
 s = s + x;
 cin >> x;
 }
 found = (s > 50);
 }
 if (found) cout << “yes” << endl;
 else cout << “no” << endl;
}

Introduction to Programming © Dept. CS, UPC 38

Inner loop reads
the rest of
elements of
each sequence,
until the
marking zero is
found.

Each iteration
processes one
element and
accumulates the
sum of seen
elements.

int s = 0;
while (x != 0) {
 s = s + x;
 cin >> x;
}

2. Search sequence, treat-all elements

Sequences of sequences: Task Structure

• 4 possible combinations:

1. Treat-all sequences, treat-all elements

2. Search sequence, treat-all elements

3. Search sequence, search element

4. Treat-all sequences, search elements

Introduction to Programming © Dept. CS, UPC 39

Introduction to Programming © Dept. CS, UPC 40

int main() {
 bool found = false;
 int x;
 int p = 0;
 while (cin >> x and not found) {
 bool end3 = false;
 while (x != 0 and not end3) {
 end3 = (x%10 == 3);
 cin >> x;
 }
 found = end3;
 p = p + 1;
 }
 if (found) cout << p << endl;
 else cout << “none” << endl;
}

Example: Locate
the first sequence
that contains a
number ending in
3.

Each sequence
ends in zero.

3. Search sequence, search element

12 10 7 5 0
1 22 0
4 0
3 4 1 0

Introduction to Programming © Dept. CS, UPC 41

Main loop reads
the first element
of each sequence,
until there are no
more sequences,
or a matching
sequence is found

Each iteration
processes a whole
sequence.

3. Search sequence, search element

int main() {
 bool found = false;
 int x;
 int p = 0;
 while (cin >> x and not found) {
 bool end3 = false;
 while (x != 0 and not end3) {
 end3 = (x%10 == 3);
 cin >> x;
 }
 found = end3;
 p = p + 1;
 }
 if (found) cout << p << endl;
 else cout << “none” << endl;
}

Check if current sequence contains a
prime number
Store result in ‘end3’.

Introduction to Programming © Dept. CS, UPC 42

Inner loop reads
the rest of
elements of each
sequence, until
the marking zero
is reached or a
number ending in
3 is found.

Each iteration
processes one
element .

3. Search sequence, search element

int main() {
 bool found = false;
 int x;
 int p = 0;
 while (cin >> x and not found) {
 bool end3 = false;
 while (x != 0 and not end3) {
 end3 = (x%10 == 3);
 cin >> x;
 }
 found = end3;
 p = p + 1;
 }
 if (found) cout << p << endl;
 else cout << “none” << endl;
}

bool end3 = false;
while (x != 0 and not end3) {
 end3 = (x%10 == 3);
 cin >> x;
}

Sequences of sequences: Task Structure

• 4 possible combinations:

1. Treat-all sequences, treat-all elements

2. Search sequence, treat-all elements

3. Search sequence, search element

4. Treat-all sequences, search elements

Introduction to Programming © Dept. CS, UPC 43

Introduction to Programming © Dept. CS, UPC 44

int main() {
 int n = 0;
 int x;
 while (cin >> x) {
 bool mult = false;
 while (x != 0) {
 if (x%10 == 0)
 mult = true;
 cin >> x;
 }
 if (mult) n = n + 1;
 }
 cout << n << endl;
}

Example: Count how
many sequences
contain a multiple of
10.

Each sequence ends
in zero.

4. Treat-all sequences, search element

12 10 -7 5 0
1 22 0
4 0
3 -4 1 0

Introduction to Programming © Dept. CS, UPC 45

int main() {
 int n = 0;
 int x;
 while (cin >> x) {
 bool mult = false;
 while (x != 0) {
 if (x%10 == 0)
 mult = true;
 cin >> x;
 }
 if (mult) n = n + 1;
 }
 cout << n << endl;
}

Main loop reads the
first element of
each sequence, until
there are no more
sequences.

Each iteration
processes a whole
sequence.

4. Treat-all sequences, search element

Check if current sequence
contains a multiple of 10.
Store result in mult.

Introduction to Programming © Dept. CS, UPC 46

int main() {
 int n = 0;
 int x;
 while (cin >> x) {
 bool mult = false;
 while (x != 0) {
 if (x%10 == 0)
 mult = true;
 cin >> x;
 }
 if (mult) n = n + 1;
 }
 cout << n << endl;
}

Inner loop reads the
rest of elements of
each sequence, until
the marking zero is
reached, checking if
a multiple of 10 is
found.

Each iteration
processes one
element .

4. Treat-all sequences, search element

bool mult = false;
while (x != 0) {
 if (x%10 == 0)
 mult = true;
 cin >> x;
}

Introduction to Programming © Dept. CS, UPC 47

int main() {
 int n = 0;
 int x;
 while (cin >> x) {
 bool mult = false;
 while (x != 0) {
 if (x%10 == 0)
 mult = true;
 cin >> x;
 }
 if (mult) n = n + 1;
 }
 cout << n << endl;
}

Inner loop reads the
rest of elements of
each sequence, until
the marking zero is
reached, checking if
a multiple of 10 is
found.

Each iteration
processes one
element .

4. Treat-all sequences, search element

bool mult = false;
while (x != 0) {
 if (x%10 == 0)
 mult = true;
 cin >> x;
}

BUT we can NOT stop when we find a multiple of 10 !!

We MUST read all elements until the 0, to keep in

sync with the main loop.

Sequences of sequences

• Input Structure
– We may be given the number of sequences, have

an end mark, or we may need to read as many as
they come.

– Inside each sequence, we may be given the
number of elements, or the end of the sequence
may be identified with a marker element.

6 possible combinations

Introduction to Programming © Dept. CS, UPC 48

Sequences of sequences: Input Structure

• 6 possible combinations:
1. Known number of sequences, known number of

elements in each.

2. Known number of sequences, final mark in each.

3. Unknown number of sequences, known number of
elements in each.

4. Unknown number of sequences, final mark in each.

5. Mark indicating no more sequences, known number of
elements in each.

6. Mark indicating no more sequences, final mark in
each.

Introduction to Programming © Dept. CS, UPC 49

Sequences of sequences: Input Structure

6 possible combinations:
1. Known number of sequences, known number of

elements in each.

2. Known number of sequences, final mark in each.

3. Unknown number of sequences, known number of
elements in each.

4. Unknown number of sequences, final mark in each.

5. Mark indicating no more sequences, known number of
elements in each.

6. Mark indicating no more sequences, final mark in each.

Introduction to Programming © Dept. CS, UPC 50

Introduction to Programming © Dept. CS, UPC 51

4
5 12 10 8 7 5
1 22
0
3 0 -4 1

1. Known number of sequences, known number of elements in each

Introduction to Programming © Dept. CS, UPC 52

4
5 12 10 8 7 5
1 22
0
3 0 -4 1

Number of
sequences

1. Known number of sequences, known number of elements in each

Introduction to Programming © Dept. CS, UPC 53

4
5 12 10 8 7 5
1 22
0
3 0 -4 1

Number of
sequences

Number of
elements
in each
sequence

1. Known number of sequences, known number of elements in each

Introduction to Programming © Dept. CS, UPC 54

4
5 12 10 8 7 5
1 22
0
3 0 -4 1

Number of
sequences

Number of
elements
in each
sequence

Elements in each sequence

1. Known number of sequences, known number of elements in each

Introduction to Programming © Dept. CS, UPC 55

The actual position of the elements does not matter

4 5 12 10 8 7 5 1 22 0 3 0 -4 1

1. Known number of sequences, known number of elements in each1. Known number of sequences, known number of elements in each

Introduction to Programming © Dept. CS, UPC 56

4 5 12 10 8 7 5 1 22 0 3 0 -4 1

Number of
sequences

1. Known number of sequences, known number of elements in each

The actual position of the elements does not matter

Introduction to Programming © Dept. CS, UPC 57

4 5 12 10 8 7 5 1 22 0 3 0 -4 1

Number of
elements
in seq 1

Elements
of seq 1

1. Known number of sequences, known number of elements in each

The actual position of the elements does not matter

Introduction to Programming © Dept. CS, UPC 58

4 5 12 10 8 7 5 1 22 0 3 0 -4 1

Number of
elements
in seq 2

Elements
of seq 2

1. Known number of sequences, known number of elements in each

The actual position of the elements does not matter

Introduction to Programming © Dept. CS, UPC 59

4 5 12 10 8 7 5 1 22 0 3 0 -4 1

Number of
elements
in seq 3

1. Known number of sequences, known number of elements in each

The actual position of the elements does not matter

Introduction to Programming © Dept. CS, UPC 60

4 5 12 10 8 7 5 1 22 0 3 0 -4 1

Number of
elements
in seq 4

Elements
of seq 4

1. Known number of sequences, known number of elements in each

The actual position of the elements does not matter

Introduction to Programming © Dept. CS, UPC 61

1. Known number of sequences, known number of elements in each

// get number of sequences
int ns;
cin >> ns;

for (int i=0; i<ns; ++i) {
 // get number of elements in sequence #i
 int ne;
 cin >> ne

 for (int j=0; j<ne; ++j) {
 // get element #j in seq #i
 int x;
 cin >> x;

 // process element
 }
}

Sequences of sequences: Input Structure

6 possible combinations:
1. Known number of sequences, known number of

elements in each.

2. Known number of sequences, final mark in each.

3. Unknown number of sequences, known number of
elements in each.

4. Unknown number of sequences, final mark in each.

5. Mark indicating no more sequences, known number of
elements in each.

6. Mark indicating no more sequences, final mark in each.

Introduction to Programming © Dept. CS, UPC 62

Introduction to Programming © Dept. CS, UPC 63

4
12 10 8 7 5 0
1 22 0
0
3 -4 1 0

2. Known number of sequences, final mark in each

Introduction to Programming © Dept. CS, UPC 64

4
12 10 8 7 5 0
1 22 0
0
3 -4 1 0

2. Known number of sequences, final mark in each

Number of
sequences

Introduction to Programming © Dept. CS, UPC 65

4
12 10 8 7 5 0
1 22 0
0
3 -4 1 0

2. Known number of sequences, final mark in each

Number of
sequences

Elements in each
sequence
Elements in each
sequence

Introduction to Programming © Dept. CS, UPC 66

4
12 10 8 7 5 0
1 22 0
0
3 -4 1 0

2. Known number of sequences, final mark in each

Number of
sequences

Elements in each
sequence
Elements in each
sequence

Final mark
in each
sequence

Introduction to Programming © Dept. CS, UPC 67

Again, the actual position of the elements does not matter

4 12 10 8 7 5 0 1 22 0 0 3 -4 1 0

2. Known number of sequences, final mark in each

Introduction to Programming © Dept. CS, UPC 68

Again, the actual position of the elements does not matter

4 12 10 8 7 5 0 1 22 0 0 3 -4 1 0

Number of
sequences

2. Known number of sequences, final mark in each

Introduction to Programming © Dept. CS, UPC 69

Again, the actual position of the elements does not matter

4 12 10 8 7 5 0 1 22 0 0 3 -4 1 0

Number of
sequences

Elements
of seq 1

End mark
of seq 1

2. Known number of sequences, final mark in each

Introduction to Programming © Dept. CS, UPC 70

Again, the actual position of the elements does not matter

4 12 10 8 7 5 0 1 22 0 0 3 -4 1 0

Number of
sequences

Elements
of seq 3

End mark
of seq 2

2. Known number of sequences, final mark in each

Introduction to Programming © Dept. CS, UPC 71

Again, the actual position of the elements does not matter

4 12 10 8 7 5 0 1 22 0 0 3 -4 1 0

Number of
sequences

End mark
of seq 3
(no elements)

2. Known number of sequences, final mark in each

Introduction to Programming © Dept. CS, UPC 72

Again, the actual position of the elements does not matter

4 12 10 8 7 5 0 1 22 0 0 3 -4 1 0

Number of
sequences

Elements
of seq 4

End mark
of seq 4

2. Known number of sequences, final mark in each

Introduction to Programming © Dept. CS, UPC 73

// get number of sequences
int ns;
cin >> ns;

for (int i=0; i<ns; ++i) {
 // get elements in sequence until mark is found
 int x;
 cin >> x
 while (x != 0) {
 // process element x

 cin >> x;
 }
}

2. Known number of sequences, final mark in each

Sequences of sequences: Input Structure

6 possible combinations:
1. Known number of sequences, known number of

elements in each.

2. Known number of sequences, final mark in each.

3. Unknown number of sequences, known number of
elements in each.

4. Unknown number of sequences, final mark in each.

5. Mark indicating no more sequences, known number of
elements in each.

6. Mark indicating no more sequences, final mark in each.

Introduction to Programming © Dept. CS, UPC 74

Introduction to Programming © Dept. CS, UPC 75

5 12 10 8 7 5
2 1 22
0
3 2 -4 1

3. Unknown number of sequences, known number of elements in each

Introduction to Programming © Dept. CS, UPC 76

5 12 10 8 7 5
2 1 22
0
3 2 -4 1

3. Unknown number of sequences, known number of elements in each

Number of
elements in
each sequence

Introduction to Programming © Dept. CS, UPC 77

5 12 10 8 7 5
2 1 22
0
3 2 -4 1

3. Unknown number of sequences, known number of elements in each

Number of
elements in
each sequence

Elements in each sequence

Introduction to Programming © Dept. CS, UPC 78

Again, the actual position of the elements does not matter

5 12 10 8 7 5 2 1 22 0 3 2 -4 1

3. Unknown number of sequences, known number of elements in each

Introduction to Programming © Dept. CS, UPC 79

Again, the actual position of the elements does not matter

5 12 10 8 7 5 2 1 22 0 3 2 -4 1

Number of
elements
in seq 1

Elements
of seq 1

3. Unknown number of sequences, known number of elements in each

Introduction to Programming © Dept. CS, UPC 80

Again, the actual position of the elements does not matter

5 12 10 8 7 5 2 1 22 0 3 2 -4 1

Number of
elements
in seq 2

Elements
of seq 2

3. Unknown number of sequences, known number of elements in each

Introduction to Programming © Dept. CS, UPC 81

Again, the actual position of the elements does not matter

5 12 10 8 7 5 2 1 22 0 3 2 -4 1

Number of elements
in seq 3 (no elements)

3. Unknown number of sequences, known number of elements in each

Introduction to Programming © Dept. CS, UPC 82

Again, the actual position of the elements does not matter

5 12 10 8 7 5 2 1 22 0 3 2 -4 1

Number of
elements
in seq 4

Elements
of seq 4

3. Unknown number of sequences, known number of elements in each

Introduction to Programming © Dept. CS, UPC 83

// get number of elements of each sequence (if any)
int ne;
while (cin >> ne) {

 for (int j=0; j<ne; ++j) {
 // get element #j in current sequence
 int x;
 cin >> x;

 // process element
 }
}

3. Unknown number of sequences, known number of elements in each

Sequences of sequences: Input Structure

6 possible combinations:
1. Known number of sequences, known number of

elements in each.

2. Known number of sequences, final mark in each.

3. Unknown number of sequences, known number of
elements in each.

4. Unknown number of sequences, final mark in each.

5. Mark indicating no more sequences, known number of
elements in each.

6. Mark indicating no more sequences, final mark in each.

Introduction to Programming © Dept. CS, UPC 84

Introduction to Programming © Dept. CS, UPC 85

12 10 8 7 5 0
1 22 0
0
3 -4 1 0

4. Unknown number of sequences, final mark in each

Introduction to Programming © Dept. CS, UPC 86

12 10 8 7 5 0
1 22 0
0
3 -4 1 0

4. Unknown number of sequences, final mark in each

Elements in each
sequence

Introduction to Programming © Dept. CS, UPC 87

12 10 8 7 5 0
1 22 0
0
3 -4 1 0

4. Unknown number of sequences, final mark in each

Elements in each
sequence

Final mark
in each
sequence

Introduction to Programming © Dept. CS, UPC 88

Again, the actual position of the elements does not matter

12 10 8 7 5 0 1 22 0 0 3 -4 1 0

4. Unknown number of sequences, final mark in each

Introduction to Programming © Dept. CS, UPC 89

Again, the actual position of the elements does not matter

12 10 8 7 5 0 1 22 0 0 3 -4 1 0

4. Unknown number of sequences, final mark in each

Elements
of seq 1

End mark
of seq 1

Introduction to Programming © Dept. CS, UPC 90

Again, the actual position of the elements does not matter

12 10 8 7 5 0 1 22 0 0 3 -4 1 0

4. Unknown number of sequences, final mark in each

Elements
of seq 2

End mark
of seq 3

Introduction to Programming © Dept. CS, UPC 91

Again, the actual position of the elements does not matter

12 10 8 7 5 0 1 22 0 0 3 -4 1 0

4. Unknown number of sequences, final mark in each

End mark of
seq 3
(no elements)

Introduction to Programming © Dept. CS, UPC 92

Again, the actual position of the elements does not matter

12 10 8 7 5 0 1 22 0 0 3 -4 1 0

4. Unknown number of sequences, final mark in each

Elements
of seq 4

End mark
of seq 4

Introduction to Programming © Dept. CS, UPC 93

// get first element of each
// sequence (if any)
int x;
while (cin >> x) {

 // get elements in sequence
 // until mark is found
 while (x != 0) {
 // process element x

 cin >> x;
 }
}

4. Unknown number of sequences, final mark in each

Sequences of sequences: Input Structure

6 possible combinations:
1. Known number of sequences, known number of

elements in each.

2. Known number of sequences, final mark in each.

3. Unknown number of sequences, known number of
elements in each.

4. Unknown number of sequences, final mark in each.

5. Mark indicating no more sequences, known number of
elements in each.

6. Mark indicating no more sequences, final mark in each.

Introduction to Programming © Dept. CS, UPC 94

Introduction to Programming © Dept. CS, UPC 95

5 12 10 8 7 5
2 1 22
0
3 3 -4 1
-1

5. Mark indicating no more sequences,
known number of elements in each.

Introduction to Programming © Dept. CS, UPC 96

5 12 10 8 7 5
2 1 22
0
3 3 -4 1
-1

Number of
elements in
each sequence

5. Mark indicating no more sequences,
known number of elements in each.

Introduction to Programming © Dept. CS, UPC 97

Elements in each
sequence

5 12 10 8 7 5
2 1 22
0
3 3 -4 1
-1

5. Mark indicating no more sequences,
known number of elements in each.

5 12 10 8 7 5
2 1 22
0
3 3 -4 1
-1

Introduction to Programming © Dept. CS, UPC 98

Final mark (no more
sequences)

5. Mark indicating no more sequences,
known number of elements in each.

Introduction to Programming © Dept. CS, UPC 99

Again, the actual position of the elements does not matter

5 12 10 8 7 5 2 1 22 0 3 3 -4 1 -1

5. Mark indicating no more sequences,
known number of elements in each.

5. Mark indicating no more sequences,
known number of elements in each.

Introduction to Programming © Dept. CS, UPC 100

Again, the actual position of the elements does not matter

5. Mark indicating no more sequences,
known number of elements in each.

5 12 10 8 7 5 2 1 22 0 3 3 -4 1 -1

Elements
of seq 1Number of

elements
in seq 1

Introduction to Programming © Dept. CS, UPC 101

Again, the actual position of the elements does not matter

5. Mark indicating no more sequences,
known number of elements in each.

5 12 10 8 7 5 2 1 22 0 3 3 -4 1 -1

Number of
elements in seq 2

Elements
of seq 2

Introduction to Programming © Dept. CS, UPC 102

Again, the actual position of the elements does not matter

5. Mark indicating no more sequences,
known number of elements in each.

5 12 10 8 7 5 2 1 22 0 3 3 -4 1 -1

Number of elements
in seq 3 (no elements)

Introduction to Programming © Dept. CS, UPC 103

Again, the actual position of the elements does not matter

5. Mark indicating no more sequences,
known number of elements in each.

5 12 10 8 7 5 2 1 22 0 3 3 -4 1 -1

Number of
elements in seq 4 Elements

of seq 4

Introduction to Programming © Dept. CS, UPC 104

Again, the actual position of the elements does not matter

5. Mark indicating no more sequences,
known number of elements in each.

5 12 10 8 7 5 2 1 22 0 3 3 -4 1 -1

Final mark
(no more sequences)

Introduction to Programming © Dept. CS, UPC 105

// get first element of each
// sequence (which may be the mark)
int ne;
cin >> ne;
while (ne != -1) {
 // get elements in sequence,
 // as many as ‘ne’ indicates
 for (int i=0; i<ne; ++i) {
 int x;
 cin >> x;
 // process element x
 }
 // number of elements of next
 // sequence (or final mark)
 cin >> ne;
}

5. Mark indicating no more sequences,
known number of elements in each.

Sequences of sequences: Input Structure

• 6 possible combinations:
1. Known number of sequences, known number of

elements in each.

2. Known number of sequences, final mark in each.

3. Unknown number of sequences, known number of
elements in each.

4. Unknown number of sequences, final mark in each.

5. Mark indicating no more sequences, known number of
elements in each.

6. Mark indicating no more sequences, final mark in each.

Introduction to Programming © Dept. CS, UPC 106

Introduction to Programming © Dept. CS, UPC 107

12 10 8 7 5 0
1 22 0
0
3 -4 1 0
-1

6. Mark indicating no more sequences, final mark in each.

Introduction to Programming © Dept. CS, UPC 108

12 10 8 7 5 0
1 22 0
0
3 -4 1 0
-1

Elements in each
sequence

6. Mark indicating no more sequences, final mark in each.

Introduction to Programming © Dept. CS, UPC 109

12 10 8 7 5 0
1 22 0
0
3 -4 1 0
-1

Elements in each
sequence

Final mark
in each
sequence

6. Mark indicating no more sequences, final mark in each.

Introduction to Programming © Dept. CS, UPC 110

12 10 8 7 5 0
1 22 0
0
3 -4 1 0
-1

Final mark, (no
more sequences)

6. Mark indicating no more sequences, final mark in each.

Introduction to Programming © Dept. CS, UPC 111

Again, the actual position of the elements does not matter

12 10 8 7 5 0 1 22 0 0 3 -4 1 0 -1

6. Mark indicating no more sequences, final mark in each.

Introduction to Programming © Dept. CS, UPC 112

Again, the actual position of the elements does not matter

12 10 8 7 5 0 1 22 0 0 3 -4 1 0 -1

Elements
of seq 1

End mark
of seq 1

6. Mark indicating no more sequences, final mark in each.

Introduction to Programming © Dept. CS, UPC 113

Again, the actual position of the elements does not matter

12 10 8 7 5 0 1 22 0 0 3 -4 1 0 -1

Elements
of seq 2

End mark
of seq 3

6. Mark indicating no more sequences, final mark in each.

Introduction to Programming © Dept. CS, UPC 114

Again, the actual position of the elements does not matter

12 10 8 7 5 0 1 22 0 0 3 -4 1 0 -1

End mark of
seq 3
(no elements)

6. Mark indicating no more sequences, final mark in each.

Introduction to Programming © Dept. CS, UPC 115

Again, the actual position of the elements does not matter

12 10 8 7 5 0 1 22 0 0 3 -4 1 0 -1

Elements
of seq 4

End mark
of seq 4

6. Mark indicating no more sequences, final mark in each.

Introduction to Programming © Dept. CS, UPC 116

Again, the actual position of the elements does not matter

12 10 8 7 5 0 1 22 0 0 3 -4 1 0 -1

Final mark (no more
sequences)

6. Mark indicating no more sequences, final mark in each.

Introduction to Programming © Dept. CS, UPC 117

// get first element of each
// sequence (which may be the mark)
int x;
cin >> x;
while (x != -1) {
 // get elements in sequence
 // until mark is found
 while (x != 0) {
 // process element x
 cin >> x;
 }
 // first element of next
 // sequence (or the final mark)
 cin >> x;
}

6. Mark indicating no more sequences, final mark in each.

	Diapositiva 1
	Outline
	Diapositiva 3
	Maximum of a sequence
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Maximum of a sequence
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64
	Diapositiva 65
	Diapositiva 66
	Diapositiva 67
	Diapositiva 68
	Diapositiva 69
	Diapositiva 70
	Diapositiva 71
	Diapositiva 72
	Diapositiva 73
	Diapositiva 74
	Diapositiva 75
	Diapositiva 76
	Diapositiva 77
	Diapositiva 78
	Diapositiva 79
	Diapositiva 80
	Diapositiva 81
	Diapositiva 82
	Diapositiva 83
	Diapositiva 84
	Diapositiva 85
	Diapositiva 86
	Diapositiva 87
	Diapositiva 88
	Diapositiva 89
	Diapositiva 90
	Diapositiva 91
	Diapositiva 92
	Diapositiva 93
	Diapositiva 94
	Diapositiva 95
	Diapositiva 96
	Diapositiva 97
	Diapositiva 98
	Diapositiva 99
	Diapositiva 100
	Diapositiva 101
	Diapositiva 102
	Diapositiva 103
	Diapositiva 104
	Diapositiva 105
	Diapositiva 106
	Diapositiva 107
	Diapositiva 108
	Diapositiva 109
	Diapositiva 110
	Diapositiva 111
	Diapositiva 112
	Diapositiva 113
	Diapositiva 114
	Diapositiva 115
	Diapositiva 116
	Diapositiva 117

