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Outline

● Sliding window strategy: Processing sequence 
elements that depend on neighbors

– Treat-all algorithms

– Search algorithms

• Sequences of sequences

– Treat-all sequences, treat-all elements in each.

– Search sequence, treat-all elements in each.

– Search sequence, search element in each.

– Treat-all sequences, search element in each.
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Sliding Window Strategy



Sliding Window Strategy

• Write a program that counts the number of 
consecutive ascending pairs in a non-empty 
sequence of integers.
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// Pre:  a non-empty sequence of integers is
//       ready to be read at cin

// Post: the number of ascending intervals from one element

//        to the next has been written to the output

Assume the input sequence is: 3 12 8 19 25 15

// Invariant: m is the count of ascending intervals found 
//            so far in the sequence.

elem: 3 12 8 19 25 15

count: 0 1 1 2 3 3



Sliding Window Strategy
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3 12 8 19 25 15

● Keep a “window” that checks two consecutive 
elements, and slides one position at a time:

3 12 8 19 25 15

3 12 8 19 25 15

3 12 8 19 25 15

3 12 8 19 25 15

Iteration 1. count = 1

Iteration 2. count = 1

Iteration 3. count = 2

Iteration 4. count = 3

Iteration 5. count = 3



Sliding Window Strategy
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3 12 8 19 25 15

● The “window” can be emulated with two variables, 
one containint the current value, and another 
containing the previous value.

prev  curr

Iteration 1.  prev=3, curr=12



Sliding Window Strategy

Introduction to Programming © Dept. CS, UPC 7

3 12 8 19 25 15

● The “window” can be emulated with two variables, 
one containint the current value, and another 
containing the previous value.

prev  curr

Iteration 2.  prev=12, curr=8



Sliding Window Strategy
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3 12 8 19 25 15

● The “window” can be emulated with two variables, 
one containint the current value, and another 
containing the previous value.

prev  curr

Iteration 3.  prev=8, curr=19



Sliding Window Strategy
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3 12 8 19 25 15

● The “window” can be emulated with two variables, 
one containint the current value, and another 
containing the previous value.

prev  curr

Iteration 4.  prev=19, curr=25



Sliding Window Strategy
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3 12 8 19 25 15

● The “window” can be emulated with two variables, 
one containint the current value, and another 
containing the previous value.

prev  curr

Iteration 4.  prev=19, curr=25

ETC...



Sliding Window Strategy
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● We use a normal treat-all algorithm, but we 
introduce a new variable to keep the value of 
the previous element.

● Special attention must be paid to 
initialization: 
  What is the element previous to the first ?



Count ascending consecutive pairs

int main() {
    int c = 0; // ascending pair counter

    int elem; // current element
    int prev; // previous element
    cin >> prev; 
    while (cin >> elem) {
        // if ascending pair, count it.
        if (elem > prev) c = c + 1;
        // prepare for next iteration
        prev = elem;  
    }

    cout << c << endl;
}
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Sliding Window Strategy

Introduction to Programming © Dept. CS, UPC 13

● Windows may be of any size (2, 3, 4, …)

● We can do searches as well as treat-all 
algorithms.



Sliding Window Strategy
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Write a program that checks whether a 
sequence of characters ending with a dot 
contains the combination “hola”.

fgsdholasfgg.



Sliding Window Strategy
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● We need a window of size 4 (i.e. 4 variables: 1 for 
current character, 3 for previous elements)

● Search algorithm: If the combination is found, 
there is no need to keep checking. 

fgsdholasfgg.
fgsdholasfgg.
fgsdholasfgg.
fgsdholasfgg.

fgsdholasfgg.



Sliding Window Strategy
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● 4 variables for the window: a,b,c,d
● Advance one position at a time

fgsdholasfgg.
a b c d 



Sliding Window Strategy
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● 4 variables for the window: a,b,c,d
● Advance one position at a time

fgsdholasfgg.
a b c d 



Sliding Window Strategy
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● 4 variables for the window: a,b,c,d
● Advance one position at a time

fgsdholasfgg.
a b c d 



Sliding Window Strategy
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● 4 variables for the window: a,b,c,d
● Advance one position at a time

fgsdholasfgg.
a b c d 



Sliding Window Strategy
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● 4 variables for the window: a,b,c,d
● Advance one position at a time

fgsdholasfgg.
a b c d 



Sliding Window Strategy
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● We use a normal search algorithm, but we 
introduce three new variables to keep the value 
of the previous elements.

● Special attention must be paid to initialization: 
  What are the 3 elements previous to the first ?

The sequence may have less than 4 characters!!



Find ‘hola’ in a sequence of characters
int main() {

    char a,b,c; // 3 previous elements

    char d;     // current element

    // init previous elements to something inocuous

    a=‘_‘; b=‘_‘; c=‘_‘; 

    cin >> d;

    bool found = false;

    while (not found and d != ‘.’) {

        found = (a==’h’ and b==’o’ and 
                 c==’l’ and d==’a’)

        // prepare for next iteration

        a = b; b = c; c = d;

        cin >> d;

    }

    if (found) cout << “yes” << endl;

    else  cout << “no” << endl;

}
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Sliding Window Strategy
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● Similar problems:
● Compute the maximum difference between one 

element and the next in a sequence of integers. (treat-
all, window=2)

● Compute length of longest sequence of consecutive 
repetitions of the same word. (treat-all, window=2)

● Find out whether a sequence of integers is ascending. 
(search, window=2)

● Compute maximum ‘peak’ in a sequence of integers 
(treat-all, window=3) 



Sequences of Sequences



Sequences of sequences

• Single process sequence is applied to a  collection of 
sequences

• Example: Given a several sequences of integers, each 
ended in zero, compute the maximum of each 
sequence.
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3 5 8 1 10 4 9 0
12 5 6 1 7 0
9 22 31 1 1 5 0 
1 0

Input

10
12
31
1

Output



Sequences of sequences

• Single process sequence is applied to a  collection of 
sequences plus an overall computation.

• Example: Given a several sequences of integers, each 
ended in zero, compute the maximum of each 
sequence and the sum of the maximums.
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3 5 8 1 10 4 9 0
12 5 6 1 7 0
9 22 31 1 1 5 0 
1 0

Input

10
12
31
1
Sum=54 

Output



Sequences of sequences

• When dealing with sequences of sequences, two 
things must be taken into account:

– Task Structure
● We check all sequences or we stop when a certain 

sequence is found ?
● Inside each sequence, we check all elements, or we 

stop when a certain element is found ?

– Input Structure
● Each sequence ends with a marking element or we 

know the number of elements it contains?
● We read sequences until there are no more, or we 

know the number of sequences to read?
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Sequences of sequences

• Task Structure:
– We may need to check all sequences (treat-all 

sequences), or stop when one with certain 
properties is found (sequence search)

– Inside each sequence, we may need to check all 
elements (treat-all elements), or stop when one 
with certain properties is found (element search)

4 possible combinations
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Sequences of sequences: Task Structure

• 4 possible combinations:

1. Treat-all sequences, treat-all elements

2. Search sequence, treat-all elements

3. Search sequence, search element

4. Treat-all sequences, search elements
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● Example problems:
● Given several sequences of integers, count the average amount 

of prime numbers per sequence (treat-all sequences, treat-all 
elements).

● Given several sequences of char, check whether one of the 
sequences contains the char combination “hola” an even 
number of times (search sequence, treat-all elements).

● Given several sequences of integers, find out which is the first 
sequence that contains a prime number (search sequence, 
search element).

● Given several sequences of integers, output the first position in 
each sequence that contains a prime number (treat-all 
sequences, search element) 

Sequences of sequences: Task Structure



Sequences of sequences: Task Structure

• 4 possible combinations:

1. Treat-all sequences, treat-all elements

2. Search sequence, treat-all elements

3. Search sequence, search element

4. Treat-all sequences, search elements
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int main() {
    int sum = 0; 
    int x; 
    while (cin >> x) {
       int m = x;
       while (x != 0) {
         if (x > m) m = x;
         cin >> x
       }
       cout << m << endl;
       sum = sum + m;
    }
    cout << sum << endl;
}

Example: Compute the 
maximum of each 
sequence, and the sum 
of all maximums. 

Each sequence ends in 
zero and has at least 
one element.

1. Treat-all sequences, treat-all elements

12 10 8 7 5 0
1  22 0
4  0
3  -4 1 0
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Main loop reads the 
first element of each 
sequence, until there 
are no more 
sequences.

Each iteration 
processes a whole 
sequence.

int main() {
    int sum = 0; 
    int x; 
    while (cin >> x) {
       int m = x;
       while (x != 0) {
         if (x > m) m = x;
         cin >> x
       }
       cout << m << endl;
       sum = sum + m;
    }
    cout << sum << endl;
}

Compute maximum of current 
sequence, until zero is found. 
Store result in m.

1. Treat-all sequences, treat-all elements



int main() {
    int sum = 0; 
    int x; 
    while (cin >> x) {
       int m = x;
       while (x != 0) {
         if (x > m) m = x;
         cin >> x
       }
       cout << m << endl;
       sum = sum + m;
    }
    cout << sum << endl;
}
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Inner loop reads the 
rest of elements of 
each sequence, until 
the marking zero is 
found.

Each iteration 
processes one element 
and stores the 
maximum of seen 
elements.

int m = x;
while (x != 0) {
  if (x > m) m = x;
  cin >> x
}

1. Treat-all sequences, treat-all elements



Sequences of sequences: Task Structure

• 4 possible combinations:

1. Treat-all sequences, treat-all elements

2. Search sequence, treat-all elements

3. Search sequence, search element

4. Treat-all sequences, search elements
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int main() {
   bool found = false; 
   int x; 
   while (cin >> x and not found) {
      int s = 0;
      while (x != 0) {
         s = s + x;
         cin >> x;
      }
      found = (s > 50);
   }
   if (found) cout << “yes” << endl;
   else cout << “no” << endl;
}

Example: Check 
if any of the 
sequences sums 
over 50.

Each sequence 
ends in zero.

2. Search sequence, treat-all elements

12 10 -7 5 0
1  22 0
4  0
3  -4 1 0



int main() {
   bool found = false; 
   int x; 
   while (cin >> x and not found) {
      int s = 0;
      while (x != 0) {
         s = s + x;
         cin >> x;
      }
      found = (s > 50);
   }
   if (found) cout << “yes” << endl;
   else cout << “no” << endl;
}
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Main loop reads 
the first element 
of each sequence, 
until there are no 
more sequences, 
or a matching 
sequence is found

Each iteration 
processes a whole 
sequence.

Compute sum of current 
sequence, until zero is found. 
Store result in s.

2. Search sequence, treat-all elements



int main() {
   bool found = false; 
   int x; 
   while (cin >> x and not found) {
      int s = 0;
      while (x != 0) {
         s = s + x;
         cin >> x;
      }
      found = (s > 50);
   }
   if (found) cout << “yes” << endl;
   else cout << “no” << endl;
}
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Inner loop reads 
the rest of 
elements of 
each sequence, 
until the 
marking zero is 
found.

Each iteration 
processes one 
element and 
accumulates the 
sum of seen 
elements.

int s = 0;
while (x != 0) {
   s = s + x;
   cin >> x;
}

2. Search sequence, treat-all elements



Sequences of sequences: Task Structure

• 4 possible combinations:

1. Treat-all sequences, treat-all elements

2. Search sequence, treat-all elements

3. Search sequence, search element

4. Treat-all sequences, search elements
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int main() {
   bool found = false; 
   int x;
   int p = 0; 
   while (cin >> x and not found) {
      bool end3 = false;
      while (x != 0 and not end3) {
         end3 = (x%10 == 3);
         cin >> x;
      }
      found = end3;
      p = p + 1;
   }
   if (found) cout << p << endl;
   else cout << “none” << endl;
}

Example:  Locate 
the first sequence 
that contains a  
number ending in 
3.

Each sequence 
ends in zero.

3. Search sequence, search element

12 10 7 5 0
1  22 0
4  0
3  4 1 0
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Main loop reads 
the first element 
of each sequence, 
until there are no 
more sequences, 
or a matching 
sequence is found

Each iteration 
processes a whole 
sequence.

3. Search sequence, search element

int main() {
   bool found = false; 
   int x;
   int p = 0; 
   while (cin >> x and not found) {
      bool end3 = false;
      while (x != 0 and not end3) {
         end3 = (x%10 == 3);
         cin >> x;
      }
      found = end3;
      p = p + 1;
   }
   if (found) cout << p << endl;
   else cout << “none” << endl;
}

Check if current sequence contains a
prime number
Store result in ‘end3’.
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Inner loop reads 
the rest of 
elements of each 
sequence, until 
the marking zero 
is reached or a  
number ending in 
3 is found.

Each iteration 
processes one 
element .

3. Search sequence, search element

int main() {
   bool found = false; 
   int x;
   int p = 0; 
   while (cin >> x and not found) {
      bool end3 = false;
      while (x != 0 and not end3) {
         end3 = (x%10 == 3);
         cin >> x;
      }
      found = end3;
      p = p + 1;
   }
   if (found) cout << p << endl;
   else cout << “none” << endl;
}

bool end3 = false;
while (x != 0 and not end3) {
   end3 = (x%10 == 3);
   cin >> x;
}



Sequences of sequences: Task Structure

• 4 possible combinations:

1. Treat-all sequences, treat-all elements

2. Search sequence, treat-all elements

3. Search sequence, search element

4. Treat-all sequences, search elements
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int main() {
   int n = 0; 
   int x;
   while (cin >> x) {
      bool mult = false;
      while (x != 0) {
         if (x%10 == 0) 
            mult = true;
         cin >> x;
      }
      if (mult) n = n + 1;
   }
   cout << n << endl;
}

Example: Count how 
many sequences  
contain a multiple of 
10.

Each sequence ends 
in zero.

4. Treat-all sequences, search element

12 10 -7 5 0
1  22 0
4  0
3  -4 1 0
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int main() {
   int n = 0; 
   int x;
   while (cin >> x) {
      bool mult = false;
      while (x != 0) {
         if (x%10 == 0) 
            mult = true;
         cin >> x;
      }
      if (mult) n = n + 1;
   }
   cout << n << endl;
}

Main loop reads the 
first element of 
each sequence, until 
there are no more 
sequences.

Each iteration 
processes a whole 
sequence.

4. Treat-all sequences, search element

Check if current sequence 
contains a multiple of 10.
Store result in mult.
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int main() {
   int n = 0; 
   int x;
   while (cin >> x) {
      bool mult = false;
      while (x != 0) {
         if (x%10 == 0) 
            mult = true;
         cin >> x;
      }
      if (mult) n = n + 1;
   }
   cout << n << endl;
}

Inner loop reads the 
rest of elements of 
each sequence, until 
the marking zero is 
reached, checking if 
a multiple of 10 is 
found.

Each iteration 
processes one 
element .

4. Treat-all sequences, search element

bool mult = false;
while (x != 0) {
   if (x%10 == 0) 
      mult = true;
   cin >> x;
}
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int main() {
   int n = 0; 
   int x;
   while (cin >> x) {
      bool mult = false;
      while (x != 0) {
         if (x%10 == 0) 
            mult = true;
         cin >> x;
      }
      if (mult) n = n + 1;
   }
   cout << n << endl;
}

Inner loop reads the 
rest of elements of 
each sequence, until 
the marking zero is 
reached, checking if 
a multiple of 10 is 
found.

Each iteration 
processes one 
element .

4. Treat-all sequences, search element

bool mult = false;
while (x != 0) {
   if (x%10 == 0) 
      mult = true;
   cin >> x;
}

BUT we can NOT stop when we find a multiple of 10 !!

We MUST read all elements until the 0, to keep in 

sync with the main loop.



Sequences of sequences

• Input Structure
– We may be given the number of sequences, have 

an end mark, or we may need to read as many as 
they come.

– Inside each sequence, we may be given the 
number of elements, or the end of the sequence 
may be identified with a marker element.

6 possible combinations
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Sequences of sequences: Input Structure

• 6 possible combinations:
1.  Known number of sequences, known number of 

elements in each.

2.  Known number of sequences, final mark in each.

3.  Unknown number of sequences, known number of 
elements in each.

4.  Unknown number of sequences, final mark in each.

5.  Mark indicating no more sequences, known number of 
elements in each.

6.  Mark indicating no more sequences, final mark in 
each.
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Sequences of sequences: Input Structure

6 possible combinations:
1.  Known number of sequences, known number of 

elements in each.

2.  Known number of sequences, final mark in each.

3.  Unknown number of sequences, known number of 
elements in each.

4.  Unknown number of sequences, final mark in each.

5. Mark indicating no more sequences, known number of 
elements in each.

6. Mark indicating no more sequences, final mark in each.
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4
5  12 10 8 7 5
1  22
0
3  0  -4  1 

1. Known number of sequences, known number of elements in each
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4
5  12 10 8 7 5
1  22
0
3  0  -4  1 

Number of 
sequences

1. Known number of sequences, known number of elements in each
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4
5  12 10 8 7 5
1  22
0
3  0  -4  1 

Number of 
sequences

Number of 
elements 
in each 
sequence

1. Known number of sequences, known number of elements in each
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4
5  12 10 8 7 5
1  22
0
3  0  -4  1 

Number of 
sequences

Number of 
elements 
in each 
sequence

Elements in each sequence

1. Known number of sequences, known number of elements in each
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The actual position of the elements does not matter

4 5 12 10 8 7 5 1  22 0 3  0  -4  1 

1. Known number of sequences, known number of elements in each1. Known number of sequences, known number of elements in each
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4 5 12 10 8 7 5 1  22 0 3  0  -4  1 

Number of 
sequences

1. Known number of sequences, known number of elements in each

The actual position of the elements does not matter
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4 5 12 10 8 7 5 1  22 0 3  0  -4  1 

Number of 
elements
in seq 1

Elements 
of seq 1

1. Known number of sequences, known number of elements in each

The actual position of the elements does not matter
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4 5 12 10 8 7 5 1  22 0 3  0  -4  1 

Number of 
elements 
in seq 2

Elements 
of seq 2

1. Known number of sequences, known number of elements in each

The actual position of the elements does not matter
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4 5 12 10 8 7 5 1  22 0 3  0  -4  1 

Number of 
elements 
in seq 3

1. Known number of sequences, known number of elements in each

The actual position of the elements does not matter
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4 5 12 10 8 7 5 1  22 0 3  0  -4  1 

Number of 
elements 
in seq 4

Elements 
of seq 4

1. Known number of sequences, known number of elements in each

The actual position of the elements does not matter
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1. Known number of sequences, known number of elements in each

// get number of sequences
int ns;
cin >> ns;  

for (int i=0; i<ns; ++i) { 
   // get number of elements in sequence #i
   int ne;
   cin >> ne 

   for (int j=0; j<ne; ++j) {
      // get element #j in seq #i
      int x; 
      cin >> x;

      // process element 
   }
}



Sequences of sequences: Input Structure

6 possible combinations:
1.  Known number of sequences, known number of 

elements in each.

2.  Known number of sequences, final mark in each.

3.  Unknown number of sequences, known number of 
elements in each.

4.  Unknown number of sequences, final mark in each.

5. Mark indicating no more sequences, known number of 
elements in each.

6. Mark indicating no more sequences, final mark in each.
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4
12 10 8 7 5 0
1  22 0
0
3  -4  1 0

2. Known number of sequences, final mark in each
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4
12 10 8 7 5 0
1  22 0
0
3  -4  1 0

2. Known number of sequences, final mark in each

Number of 
sequences
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4
12 10 8 7 5 0
1  22 0
0
3  -4  1 0

2. Known number of sequences, final mark in each

Number of 
sequences

Elements in each
sequence
Elements in each
sequence
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4
12 10 8 7 5 0
1  22 0
0
3  -4  1 0

2. Known number of sequences, final mark in each

Number of 
sequences

Elements in each
sequence
Elements in each
sequence

Final mark 
in each
sequence
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Again, the actual position of the elements does not matter

4 12 10 8 7 5 0 1 22 0 0 3 -4 1 0

2. Known number of sequences, final mark in each
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Again, the actual position of the elements does not matter

4 12 10 8 7 5 0 1 22 0 0 3 -4 1 0

Number of 
sequences

2. Known number of sequences, final mark in each
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Again, the actual position of the elements does not matter

4 12 10 8 7 5 0 1 22 0 0 3 -4 1 0

Number of 
sequences

Elements 
of seq 1

End mark 
of seq 1

2. Known number of sequences, final mark in each
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Again, the actual position of the elements does not matter

4 12 10 8 7 5 0 1 22 0 0 3 -4 1 0

Number of 
sequences

Elements 
of seq 3

End mark 
of seq 2

2. Known number of sequences, final mark in each
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Again, the actual position of the elements does not matter

4 12 10 8 7 5 0 1 22 0 0 3 -4 1 0

Number of 
sequences

End mark 
of seq 3 
(no elements)

2. Known number of sequences, final mark in each
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Again, the actual position of the elements does not matter

4 12 10 8 7 5 0 1 22 0 0 3 -4 1 0

Number of 
sequences

Elements 
of seq 4

End mark 
of seq 4

2. Known number of sequences, final mark in each
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// get number of sequences
int ns;
cin >> ns;  

for (int i=0; i<ns; ++i) { 
   // get elements in sequence until mark is found
   int x;
   cin >> x
   while (x != 0) {
      // process element x

      cin >> x;
   }
}

2. Known number of sequences, final mark in each



Sequences of sequences: Input Structure

6 possible combinations:
1.  Known number of sequences, known number of 

elements in each.

2.  Known number of sequences, final mark in each.

3.  Unknown number of sequences, known number of 
elements in each.

4.  Unknown number of sequences, final mark in each.

5. Mark indicating no more sequences, known number of 
elements in each.

6. Mark indicating no more sequences, final mark in each.
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5 12 10 8 7 5
2 1  22
0
3 2 -4  1

3. Unknown number of sequences, known number of elements in each
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5 12 10 8 7 5
2 1  22
0
3 2 -4  1

3. Unknown number of sequences, known number of elements in each

Number of 
elements in 
each sequence
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5 12 10 8 7 5
2 1  22
0
3 2 -4  1

3. Unknown number of sequences, known number of elements in each

Number of 
elements in 
each sequence

Elements in each sequence
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Again, the actual position of the elements does not matter

5 12 10 8 7 5 2 1 22 0 3 2 -4 1

3. Unknown number of sequences, known number of elements in each
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Again, the actual position of the elements does not matter

5 12 10 8 7 5 2 1 22 0 3 2 -4 1

Number of 
elements
in seq 1

Elements 
of seq 1

3. Unknown number of sequences, known number of elements in each
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Again, the actual position of the elements does not matter

5 12 10 8 7 5 2 1 22 0 3 2 -4 1

Number of 
elements
in seq 2

Elements 
of seq 2

3. Unknown number of sequences, known number of elements in each
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Again, the actual position of the elements does not matter

5 12 10 8 7 5 2 1 22 0 3 2 -4 1

Number of elements
in seq 3 (no elements) 

3. Unknown number of sequences, known number of elements in each
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Again, the actual position of the elements does not matter

5 12 10 8 7 5 2 1 22 0 3 2 -4 1

Number of 
elements
in seq 4

Elements 
of seq 4

3. Unknown number of sequences, known number of elements in each
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// get number of elements of each sequence (if any)
int ne;
while (cin >> ne) { 

   for (int j=0; j<ne; ++j) {
      // get element #j in current sequence
      int x; 
      cin >> x;

      // process element 
   }
}

3. Unknown number of sequences, known number of elements in each



Sequences of sequences: Input Structure

6 possible combinations:
1.  Known number of sequences, known number of 

elements in each.

2.  Known number of sequences, final mark in each.

3.  Unknown number of sequences, known number of 
elements in each.

4.  Unknown number of sequences, final mark in each.

5. Mark indicating no more sequences, known number of 
elements in each.

6. Mark indicating no more sequences, final mark in each.
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12 10 8 7 5 0
1  22 0
0
3  -4  1 0

4. Unknown number of sequences, final mark in each
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12 10 8 7 5 0
1  22 0
0
3  -4  1 0

4. Unknown number of sequences, final mark in each

Elements in each
sequence
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12 10 8 7 5 0
1  22 0
0
3  -4  1 0

4. Unknown number of sequences, final mark in each

Elements in each
sequence

Final mark 
in each
sequence
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Again, the actual position of the elements does not matter

12 10 8 7 5 0 1 22 0 0 3 -4 1 0

4. Unknown number of sequences, final mark in each
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Again, the actual position of the elements does not matter

12 10 8 7 5 0 1 22 0 0 3 -4 1 0

4. Unknown number of sequences, final mark in each

Elements 
of seq 1

End mark 
of seq 1
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Again, the actual position of the elements does not matter

12 10 8 7 5 0 1 22 0 0 3 -4 1 0

4. Unknown number of sequences, final mark in each

Elements 
of seq 2

End mark 
of seq 3
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Again, the actual position of the elements does not matter

12 10 8 7 5 0 1 22 0 0 3 -4 1 0

4. Unknown number of sequences, final mark in each

End mark of 
seq 3
(no elements)
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Again, the actual position of the elements does not matter

12 10 8 7 5 0 1 22 0 0 3 -4 1 0

4. Unknown number of sequences, final mark in each

Elements 
of seq 4

End mark 
of seq 4
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// get first element of each
// sequence (if any)
int x;
while (cin >> x) { 

   // get elements in sequence
   // until mark is found
   while (x != 0) {
      // process element x

      cin >> x;
   }
}

4. Unknown number of sequences, final mark in each



Sequences of sequences: Input Structure

6 possible combinations:
1.  Known number of sequences, known number of 

elements in each.

2.  Known number of sequences, final mark in each.

3.  Unknown number of sequences, known number of 
elements in each.

4. Unknown number of sequences, final mark in each.

5. Mark indicating no more sequences, known number of 
elements in each.

6. Mark indicating no more sequences, final mark in each.

Introduction to Programming © Dept. CS, UPC 94



Introduction to Programming © Dept. CS, UPC 95

5 12 10 8 7 5
2 1  22
0
3 3 -4  1
-1

5. Mark indicating no more sequences, 
known number of elements in each.
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5 12 10 8 7 5
2 1  22
0
3 3 -4  1
-1

Number of 
elements in 
each sequence

5. Mark indicating no more sequences, 
known number of elements in each.
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Elements in each
sequence

5 12 10 8 7 5
2 1  22
0
3 3 -4  1
-1

5. Mark indicating no more sequences, 
known number of elements in each.



5 12 10 8 7 5
2 1  22
0
3 3 -4  1
-1
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Final mark (no more
sequences)

5. Mark indicating no more sequences, 
known number of elements in each.
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Again, the actual position of the elements does not matter

5 12 10 8 7 5 2 1 22 0 3 3 -4 1 -1

5. Mark indicating no more sequences, 
known number of elements in each.

5. Mark indicating no more sequences, 
known number of elements in each.
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Again, the actual position of the elements does not matter

5. Mark indicating no more sequences, 
known number of elements in each.

5 12 10 8 7 5 2 1 22 0 3 3 -4 1 -1

Elements 
of seq 1Number of 

elements 
in seq 1
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Again, the actual position of the elements does not matter

5. Mark indicating no more sequences, 
known number of elements in each.

5 12 10 8 7 5 2 1 22 0 3 3 -4 1 -1

Number of 
elements in seq 2

Elements 
of seq 2
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Again, the actual position of the elements does not matter

5. Mark indicating no more sequences, 
known number of elements in each.

5 12 10 8 7 5 2 1 22 0 3 3 -4 1 -1

Number of elements
in seq 3 (no elements) 
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Again, the actual position of the elements does not matter

5. Mark indicating no more sequences, 
known number of elements in each.

5 12 10 8 7 5 2 1 22 0 3 3 -4 1 -1

Number of 
elements in seq 4 Elements 

of seq 4
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Again, the actual position of the elements does not matter

5. Mark indicating no more sequences, 
known number of elements in each.

5 12 10 8 7 5 2 1 22 0 3 3 -4 1 -1

Final mark
(no more sequences)
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// get first element of each
// sequence (which may be the mark)
int ne;
cin >> ne;
while (ne != -1) { 
   // get elements in sequence,
   // as many as ‘ne’ indicates
   for (int i=0; i<ne; ++i) {
      int x;
      cin >> x;
      // process element x
   }
   // number of elements of next
   // sequence (or final mark)
   cin >> ne;
}

5. Mark indicating no more sequences, 
known number of elements in each.



Sequences of sequences: Input Structure

• 6 possible combinations:
1.  Known number of sequences, known number of 

elements in each.

2.  Known number of sequences, final mark in each.

3.  Unknown number of sequences, known number of 
elements in each.

4.  Unknown number of sequences, final mark in each.

5. Mark indicating no more sequences, known number of 
elements in each.

6. Mark indicating no more sequences, final mark in each.
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12 10 8 7 5 0
1  22 0
0
3  -4  1 0
-1

6. Mark indicating no more sequences, final mark in each.
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12 10 8 7 5 0
1  22 0
0
3  -4  1 0
-1

Elements in each
sequence

6. Mark indicating no more sequences, final mark in each.
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12 10 8 7 5 0
1  22 0
0
3  -4  1 0
-1

Elements in each
sequence

Final mark 
in each
sequence

6. Mark indicating no more sequences, final mark in each.
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12 10 8 7 5 0
1  22 0
0
3  -4  1 0
-1

Final mark, (no 
more sequences)

6. Mark indicating no more sequences, final mark in each.
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Again, the actual position of the elements does not matter

12 10 8 7 5 0 1 22 0 0 3 -4 1 0 -1

6. Mark indicating no more sequences, final mark in each.
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Again, the actual position of the elements does not matter

12 10 8 7 5 0 1 22 0 0 3 -4 1 0 -1

Elements 
of seq 1

End mark 
of seq 1

6. Mark indicating no more sequences, final mark in each.
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Again, the actual position of the elements does not matter

12 10 8 7 5 0 1 22 0 0 3 -4 1 0 -1

Elements 
of seq 2

End mark 
of seq 3

6. Mark indicating no more sequences, final mark in each.
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Again, the actual position of the elements does not matter

12 10 8 7 5 0 1 22 0 0 3 -4 1 0 -1

End mark of 
seq 3
(no elements)

6. Mark indicating no more sequences, final mark in each.
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Again, the actual position of the elements does not matter

12 10 8 7 5 0 1 22 0 0 3 -4 1 0 -1

Elements 
of seq 4

End mark 
of seq 4

6. Mark indicating no more sequences, final mark in each.
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Again, the actual position of the elements does not matter

12 10 8 7 5 0 1 22 0 0 3 -4 1 0 -1

Final mark (no more 
sequences)

6. Mark indicating no more sequences, final mark in each.
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// get first element of each
// sequence (which may be the mark)
int x;
cin >> x;
while (x != -1) { 
   // get elements in sequence
   // until mark is found
   while (x != 0) {
      // process element x
      cin >> x;
   }
   // first element of next
   // sequence (or the final mark)
   cin >> x;
}

6. Mark indicating no more sequences, final mark in each.
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