
Introduction to Programming
(in C++)

Recursion

Jordi Cortadella, Ricard Gavaldà, Fernando Orejas

Dept. of Computer Science, UPC

Recursion

• A subprogram is recursive when it contains a call to itself.

• Recursion can substitute iteration in program design:

– Generally, recursive solutions are simpler than (or as
simple as) iterative solutions.

– There are some problems in which one solution is much
simpler than the other.

– Generally, recursive solutions are slightly less efficient than
the iterative ones (if the compiler does not try to optimize
the recursive calls).

– There are natural recursive solutions that can be extremely
inefficient. Be careful !

Introduction to Programming © Dept. CS, UPC 2

Factorial

int factorial(int n) { // iterative solution

// Pre: n >= 0
// Post: returns n!

 int f = 1;
 int i = 0;
 // Invariant: f = i! and i <= n
 while (i < n) {
 i = i + 1;
 f = f*i;
 }
 return f;
}

Introduction to Programming © Dept. CS, UPC 3

Factorial

Introduction to Programming © Dept. CS, UPC 4

Factorial

int factorial(int n) { // recursive solution

// Pre: n >= 0
// Post: returns n!

 if (n == 0) return 1;
 else return n*factorial(n-1);
}

Introduction to Programming © Dept. CS, UPC 5

Recursive design

In the design of a recursive program, we usually follow a
sequence of steps:

1. Identify the basic cases (those in which the subprogram can
solve the problem directly without recurring to recursive
calls) and determine how they are solved.

For example, in the case of factorial, the only basic case used
in the function is n=0. Similarly, we could have considered a
more general basic case (e.g., n ≤ 1). In both cases, the
function should return 1.

Introduction to Programming © Dept. CS, UPC 6

Recursive design

2. Determine how to resolve the non-basic cases in terms of the
basic cases, which we assume we can already solve.

In the case of a factorial, we know that the factorial of a
number n greater than zero is n*factorial(n-1).

3. Make sure that the parameters of the call move closer to the
basic cases at each recursive call. This should guarantee a
finite sequence of recursive calls that always terminates.

In the case of a factorial, n-1 is closer to 0 than n. Therefore,
we can guarantee that this function terminates.

Introduction to Programming © Dept. CS, UPC 7

Recursive design

• For example, it is not clear whether the following function
terminates:

 int Collatz(int n) { // recursive solution

 // Pre: n >= 1
 // Post: returns the number of steps of the Collatz
 // sequence that starts with n.

 if (n == 1) return 0;
 else if (n%2 == 0) return 1 + Collatz(n/2);
 else return 1 + Collatz(3*n + 1);
 }

• The reason is that 3 n+1 is not closer to 1 than n

Introduction to Programming © Dept. CS, UPC 8

int factorial(int n)
 if (n <= 1) return 1;
 else return n * factorial(n-1);

int factorial(int n)
 if (n <= 1) return 1;
 else return n * factorial(n-1);

int factorial(int n)
 if (n <= 1) return 1;
 else return n * factorial(n-1);

int factorial(int n)
 if (n <= 1) return 1;
 else return n * factorial(n-1);

Recursion: behind the scenes

Introduction to Programming © Dept. CS, UPC 9

...
f = factorial(4);
...

4

4 3

3

3

3 2

2

2

2 1

1

1 1

4

int factorial(int n)
 if (n <= 1) return 1;
 else return n * factorial(n-1);

2

2
2 1

int factorial(int n)
 if (n <= 1) return 1;
 else return n * factorial(n-1);

3

3

3 2

int factorial(int n)
 if (n <= 1) return 1;
 else return n * factorial(n-1);

4

4

4 3

int factorial(int n)
 if (n <= 1) return 1;
 else return n * factorial(n-1);

1

1 1

1122

2266

662424

Recursion: behind the scenes

Introduction to Programming © Dept. CS, UPC 10

...
f = factorial(4);
...

11

22

66

2424

2424

Recursion: behind the scenes

• Each time a function is called, a new instance of the
function is created. Each time a function “returns”,
its instance is destroyed.

• The creation of a new instance only requires the
allocation of memory space for data (parameters
and local variables).

• The instances of a function are destroyed in reverse
order to their creation, i.e. the first instance to be
created will be the last to be destroyed.

Introduction to Programming © Dept. CS, UPC 11

Write the binary representation

• Design a procedure that, given a number n, writes its
binary representation.

void base2(int n) {
// Pre: n >= 0
// Post: the binary representation of n
// has been written.

• Basic case (n<=1) → write n

• General case (n>1) → write n/2 and then write n%2

Introduction to Programming © Dept. CS, UPC 12

Write the binary representation
void base2(int n) {
// Pre: n >= 0
// Post: the binary representation of n has been
// written.
 if (n < 2) cout << n;
 else {
 base2(n/2);
 cout << n%2;
 }
}

The procedure always terminates since n/2 is closer to 0 than n,
and eventually it will be smaller than 2.

Introduction to Programming © Dept. CS, UPC 13

Fibonacci numbers

• Design a function that, given a number n, returns the
Fibonacci number of order n.

The Fibonacci numbers are:

• In general, except for n = 0 and n = 1, the Fibonacci number of
order n is equal to the sum of the two previous numbers.

Introduction to Programming © Dept. CS, UPC 14

0 1 2 3 4 5 6 7 8 9

1 1 2 3 5 8 13 21 34 55

order

fib

Fibonacci numbers
int fib(int n) {
// Pre: n >= 0
// Post: Returns the Fibonacci number of order n.

• Basic case:
n = 0 Return 1.⇒
n = 1 Return 1.⇒

• General case:
n > 1 Return fib(n - 1) + fib(n - 2)⇒

•

Introduction to Programming © Dept. CS, UPC 15

Fibonacci numbers

int fib(int n) { // Recursive solution
// Pre: n >= 0
// Post: Returns the Fibonacci number of order n.

 if (n <= 1) return 1;
 else return fib(n - 2) + fib(n - 1);
}

The function always terminates since the parameters of the
recursive call (n-2 and n-1) are closer to 0 and 1 than n.

Introduction to Programming © Dept. CS, UPC 16

Fibonacci numbers

Introduction to Programming © Dept. CS, UPC 17

The tree of calls for fib(5) would be:

fib(5)

fib(4)

fib(3)

fib(3)

fib(2)

fib(2)

fib(1)

fib(2)

fib(1)

fib(1)

fib(0)

fib(1)

fib(0)

fib(1)

fib(0)

Fibonacci numbers

• When fib(5) is calculated:
– fib(5) is called once

– fib(4) is called once

– fib(3) is called twice

– fib(2) is called 3 times

– fib(1) is called 5 times

– fib(0) is called 3 times

• When fib(n) is calculated, how many times will fib(1) and
fib(0) be called?

• Example: fib(50) calls fib(1) and fib(0) about 2.4·1010 times

Introduction to Programming © Dept. CS, UPC 18

Fibonacci numbers
int fib(int n) { // iterative solution
// Pre: n >= 0
// Post: returns the Fibonacci number of order n.

 int i = 1;
 int fi = 1;
 int fprev = 1;
 // Inv: fi is the Fibonacci number of order i.
 // fprev is the Fibonacci number of order i-1.
 while (i < n) {
 int f = fi + fprev
 fprev = fi;
 fi = f;
 i = i + 1;
 }
 return fi;
}

Introduction to Programming © Dept. CS, UPC 19

Fibonacci numbers

• With the iterative solution, if we calculate
fib(5), we have that:
– fib(5) is calculated once

– fib(4) is calculated once

– fib(3) is calculated once

– fib(2) is calculated once

– fib(1) is calculated once

– fib(0) is calculated once

Introduction to Programming © Dept. CS, UPC 20

Counting a’s

• We want to read a text represented as a sequence of
characters that ends with ‘.’

• We want to calculate the number of occurrences of the
letter ‘a’

• We can assume that the text always has at least one
character (the last ‘.’)

• Example: the text

 Programming in C++ is amazingly easy !.

has 4 a’s

Introduction to Programming © Dept. CS, UPC 21

Counting a’s
// Input: a sequence of characters that ends with ‘.’
// Output: the number of times ‘a’ appears in the
// sequence

• Basic case:
We have a ‘.’ at the input → return 0

• General case:
We have something different from ‘.’ at the input → calculate the number
of remaining ‘a’ at the input and add 1 if the current char is an ‘a’

Introduction to Programming © Dept. CS, UPC 22

Counting a’s
// Input: a sequence of characters that ends with ‘.’
// Output: the number of times ‘a’ appears in the
// sequence

int count_a() {
 char c;
 int na;
 cin >> c;
 if (c == '.')
 na = 0;
 else {

 int na = count_a();
if (c==’a’) na = na + 1;

 }
 return na;
}

Even though it has no parameters, we can see that the function terminates if we consider that the input
is an implicit parameter. At every recursive call, a new char is read. Therefore, each call moves closer to
reading the final dot.

Introduction to Programming © Dept. CS, UPC 23

Tower of Hanoi
• The puzzle was invented by the French mathematician Édouard Lucas in 1883.

There is a legend about an Indian temple that contains a large room with three
time-worn posts in it, surrounded by 64 golden disks. To fulfil an ancient prophecy,
Brahmin priests have been moving these disks, in accordance with the rules of the
puzzle, since that time. The puzzle is therefore also known as the Tower of Brahma
puzzle. According to the legend, when the last move in the puzzle is completed,
the world will end. It is not clear whether Lucas invented this legend or was
inspired by it.
(from http://en.wikipedia.org/wiki/Tower_of_Hanoi)

• Rules of the puzzle:
– A complete tower of disks must be moved

from one post to another.

– Only one disk can be moved at a time.

– No disk can be placed on top of a smaller disk.

Introduction to Programming © Dept. CS, UPC 24

Not allowed !

http://en.wikipedia.org/wiki/Tower_of_Hanoi

Tower of Hanoi

• What rules determine the next move?

• How many moves do we need?

• There is no trivial iterative solution.

Introduction to Programming © Dept. CS, UPC 25

Tower of Hanoi

Introduction to Programming © Dept. CS, UPC 26

Inductive reasoning: assume that we know how to solve Hanoi for n-1 disks
• Hanoi(n-1) from left to middle (safe: the largest disk is always at the bottom)
• Move the largest disk from the left to the right
• Hanoi(n-1) from the middle to the right (safe: the largest disk is always at the bottom)

Tower of Hanoi
// Pre: n is the number of disks (n≥0).
// from, to and aux are the names of the pegs.
// Post: solves the Tower of Hanoi by moving n disks
// from peg from to peg to using peg aux

void Hanoi(int n, char from, char to, char aux) {
 if (n == 1)
 cout << “Move disk from “ << from
 << “ to “ << to << endl;

 else {
 Hanoi(n - 1, from, aux, to);
 cout << “Move disk from “ << from
 << “ to “ << to << endl;
 Hanoi(n - 1, aux, to, from);

 }
}

Introduction to Programming © Dept. CS, UPC 27

Tower of Hanoi

// Main program to solve the Tower of Hanoi
// for any number of disks

int main() {
 int Ndisks;

 // Read the number of disks
 cin >> Ndisks;

 // Solve the puzzle
 Hanoi(Ndisks, ‘L’, ‘R’, ‘M’);
}

Introduction to Programming © Dept. CS, UPC 28

Tower of Hanoi
> Hanoi
5
Move disk from L to R
Move disk from L to M
Move disk from R to M
Move disk from L to R
Move disk from M to L
Move disk from M to R
Move disk from L to R
Move disk from L to M
Move disk from R to M
Move disk from R to L
Move disk from M to L
Move disk from R to M
Move disk from L to R
Move disk from L to M
Move disk from R to M

Introduction to Programming © Dept. CS, UPC 29

Move disk from L to R
Move disk from M to L
Move disk from M to R
Move disk from L to R
Move disk from M to L
Move disk from R to M
Move disk from R to L
Move disk from M to L
Move disk from M to R
Move disk from L to R
Move disk from L to M
Move disk from R to M
Move disk from L to R
Move disk from M to L
Move disk from M to R
Move disk from L to R

Tower of Hanoi

Introduction to Programming © Dept. CS, UPC 30

Hanoi(2,’L',’M’,’R’)

Hanoi(2,’M’,’R’,’L’)

Hanoi(3,’L’,’R’,’M’) L → R

Tower of Hanoi

Introduction to Programming © Dept. CS, UPC 31

Hanoi(3,’L’,’R’,’M’) L → R

Hanoi(2,’L’,’M’,’R’)

Hanoi(2,’M’,’R’,’L’)

Hanoi(1,’L’,’R’,’M’)

Hanoi(1,’R’,’M’,’L’)

Hanoi(1,’M’,’L’,’R’)

Hanoi(1,’L’,’R’,’M’)

L → M

M → R

L → R

R → M

M → L

L → R

Tower of Hanoi

• How many moves do we need for n disks?

 Moves(n) = 1 + 2*Moves(n-1)

Introduction to Programming © Dept. CS, UPC 32

n Moves(n)

1 1

2 3

3 7

4 15

5 31

6 63

n 2n-1

Tower of Hanoi

Introduction to Programming © Dept. CS, UPC 33

n time(s) time

1 2¹-1 1s

5 2⁵-1 31s

10 210-1 17m 3s

20 220-1 12d 3h 16m 15s

30 230-1 > 34y

40 240-1 > 34,000y

60 260-1 > 36,000,000,000y

•

• Let us assume that
we can move one disk
every second.

• How long would it
take to move n disks?

Digital root

• The digital root (or the repeated digital sum) of a
number is the number obtained by adding all the
digits, then adding the digits of that number, and
then continuing until a single-digit number is
reached.

• For example, the digital root of 65536 is 7, because
6 + 5 + 5 + 3 + 6 = 25 and 2 + 5 = 7.

Introduction to Programming © Dept. CS, UPC 34

Digital root

• Basic case: n can be represented as a single-
digit number → return n

• General case: n has more than one digit
– Calculate the sum of the digits

– Calculate the digital root of the sum

Introduction to Programming © Dept. CS, UPC 35

Digital root

// Assume we have a function (to be defined)
// that calculates the sum of the digits of a number
int sumdigits(int n);

// Pre: n ≥ 0
// Post: returns the digital root of n
int digital_root(int n) {
 if (n < 10)

 return n;
 else

 return digital_root(sumdigits(n));
}

Introduction to Programming © Dept. CS, UPC 36

Write a number n in base b

• Design a program that writes a number n in
base b.

• Examples:

 1024 is 10000000000 in base 2
 1101221 in base 3
 2662 in base 7
 1024 in base 10

Introduction to Programming © Dept. CS, UPC 37

Write a number n in base b

• Basic case: n < b → if the number is smaller than
the base, then it can be written with a single digit in
that base

• General case: n > 0
– Write the leading digits of the number (n/b)

– Write the last digit of the number (n%b)

Introduction to Programming © Dept. CS, UPC 38

Write a number n in base b
// Writes the representation of n in
// base b (n ≥ 0, 2<=b<=10)
void write_base(int n, int b) {
 if (n < b)
 cout << n;

 else {
 write_base(n/b, b);
 cout << n%b;
 }
}
// Input: read two numbers, n and b, with n≥0 and 2<=b<= 10
// Output: the representation of n in base b is written
int main() {
 int n, b;
 cin >> n >> b;
 write_base(n, b);
 cout << endl;
}

Introduction to Programming © Dept. CS, UPC 39

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39

