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Recursion

• A subprogram is recursive when it contains a call to itself.

• Recursion can substitute iteration in program design:

– Generally, recursive solutions are simpler than (or as 
simple as) iterative solutions.

– There are some problems in which one solution is much 
simpler than the other.

– Generally, recursive solutions are slightly less efficient than 
the iterative ones (if the compiler does not try to optimize 
the recursive calls).

– There are natural recursive solutions that can be extremely 
inefficient. Be careful !
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Factorial

int factorial(int n) { // iterative solution

// Pre:  n >= 0
// Post: returns n!

    int f = 1;
    int i = 0;
    // Invariant: f = i! and i <= n
    while (i < n) {
        i = i + 1;
         f = f*i;
    }
    return f;
}
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Factorial
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Factorial

int factorial(int n) { // recursive solution

// Pre:  n >= 0
// Post: returns n!

    if (n == 0) return 1;
    else return n*factorial(n-1);
}
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Recursive design

In the design of a recursive program, we usually follow a 
sequence of steps:

1. Identify the basic cases (those in which the subprogram can 
solve the problem directly without recurring to recursive 
calls) and determine how they are solved.

For example, in the case of  factorial, the only basic case used 
in the function is n=0. Similarly, we could have considered a 
more general basic case (e.g., n ≤ 1). In both cases, the 
function should return 1.
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Recursive design

2. Determine how to resolve the non-basic cases in terms of the 
basic cases, which we assume we can already solve.

In the case of a factorial, we know that the factorial of a 
number n greater than zero is n*factorial(n-1).

3. Make sure that the parameters of the call move closer to the 
basic cases at each recursive call. This should guarantee a 
finite sequence of recursive calls that always terminates.

In the case of a factorial, n-1 is closer to 0 than n. Therefore, 
we can guarantee that this function terminates. 
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Recursive design

• For example, it is not clear whether the following function 
terminates:

   int Collatz(int n) { // recursive solution

   // Pre:  n >= 1
   // Post: returns the number of steps of the Collatz 
   //       sequence that starts with n.

       if (n == 1) return 0;
       else if (n%2 == 0)  return 1 + Collatz(n/2);
       else return 1 + Collatz(3*n + 1);
   }

• The reason is that 3 n+1 is not closer to 1 than n
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int factorial(int n)
  if (n <= 1) return 1;
  else return n * factorial(n-1);

int factorial(int n)
  if (n <= 1) return 1;
  else return n * factorial(n-1);

int factorial(int n)
  if (n <= 1) return 1;
  else return n * factorial(n-1);

int factorial(int n)
  if (n <= 1) return 1;
  else return n * factorial(n-1);

Recursion: behind the scenes
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int factorial(int n)
  if (n <= 1) return 1;
  else return n * factorial(n-1);
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Recursion: behind the scenes

• Each time a function is called, a new instance of the 
function is created. Each time a function “returns”, 
its instance is destroyed.

• The creation of a new instance only requires the 
allocation of memory space for data (parameters 
and local variables).

• The instances of a function are destroyed in reverse 
order to their creation, i.e. the first instance to be 
created will be the last to be destroyed.
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Write the binary representation

• Design a procedure that, given a number n, writes its 
binary representation.

void base2(int n) {
// Pre:  n >= 0
// Post: the binary representation of n
//       has been written.

• Basic case (n<=1) →  write n 

• General case (n>1) → write n/2 and then write n%2
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Write the binary representation
void base2(int n) {
// Pre:  n >= 0
// Post: the binary representation of n has been
//       written.
    if (n < 2) cout << n;
    else {
        base2(n/2);
        cout << n%2;
    }
}

The procedure always terminates since n/2 is closer to 0 than n, 
and eventually it will be smaller than 2. 
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Fibonacci numbers

• Design a function that, given a number n, returns the 
Fibonacci number of order n.

The Fibonacci numbers are:

• In general, except for n = 0 and n = 1, the Fibonacci number of 
order n is equal to the sum of the two previous numbers.
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Fibonacci numbers
int fib(int n) {
// Pre:  n >= 0
// Post: Returns the Fibonacci number of order n.

• Basic case:
n = 0   Return 1.⇒
n = 1   Return 1.⇒

• General case: 
n > 1   Return fib(n - 1) + fib(n - 2)⇒

•  
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Fibonacci numbers

int fib(int n) { // Recursive solution 
// Pre:  n >= 0
// Post: Returns the Fibonacci number of order n.

    if (n <= 1) return 1;
    else return fib(n - 2) + fib(n - 1);
}

The function always terminates since the parameters of the 
recursive call (n-2 and n-1) are closer to 0 and 1 than n.
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Fibonacci numbers
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The tree of calls for fib(5) would be:
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Fibonacci numbers

• When fib(5) is calculated:
– fib(5) is called once

– fib(4) is called once

– fib(3) is called twice

– fib(2) is called 3 times

– fib(1) is called 5 times

– fib(0) is called 3 times

• When fib(n) is calculated, how many times will fib(1) and 
fib(0) be called?

• Example: fib(50) calls fib(1) and fib(0) about 2.4·1010 times

Introduction to Programming © Dept. CS, UPC 18



Fibonacci numbers
int fib(int n) { // iterative solution 
// Pre:  n >= 0
// Post: returns the Fibonacci number of order n.

 int i = 1;
    int fi = 1;
    int fprev = 1;   
    // Inv: fi is the Fibonacci number of order i.
    //      fprev is the Fibonacci number of order i-1.
    while (i < n) { 
        int f = fi + fprev
        fprev = fi;
        fi = f;
        i = i + 1;
    }
    return fi;
}
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Fibonacci numbers

• With the iterative solution, if we calculate 
fib(5), we have that:
– fib(5) is calculated once

– fib(4) is calculated once

– fib(3) is calculated once

– fib(2) is calculated once

– fib(1) is calculated once

– fib(0) is calculated once
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Counting a’s

• We want to read a text represented as a sequence of 
characters that ends with ‘.’

• We want to calculate the number of occurrences of the 
letter ‘a’

• We can assume that the text always has at least one 
character (the last ‘.’)

• Example: the text

      Programming in C++ is amazingly easy !.

has 4 a’s
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Counting a’s
// Input:  a sequence of characters that ends with ‘.’
// Output: the number of times ‘a’ appears in the
//         sequence

• Basic case:
We have a ‘.’ at the input →  return 0

• General case:
We have something different from ‘.’ at the input →  calculate the number 
of remaining ‘a’ at the input and add 1 if the current char is an ‘a’
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Counting a’s
// Input:  a sequence of characters that ends with ‘.’
// Output: the number of times ‘a’ appears in the
//         sequence

int count_a() {
    char c;
    int na;
    cin >> c;
    if (c == '.') 
       na = 0;
    else {

  int na = count_a();
if (c==’a’) na = na + 1; 

    }
    return na;
}

Even though it has no parameters, we can see that the function terminates if we consider that the input 
is an implicit parameter. At every recursive call, a new char is read. Therefore, each call moves closer to 
reading the final dot.
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Tower of Hanoi
• The puzzle was invented by the French mathematician Édouard Lucas in 1883. 

There is a legend about an Indian temple that contains a large room with three 
time-worn posts in it, surrounded by 64 golden disks. To fulfil an ancient prophecy, 
Brahmin priests have been moving these disks, in accordance with the rules of the 
puzzle, since that time. The puzzle is therefore also known as the Tower of Brahma 
puzzle. According to the legend, when the last move in the puzzle is completed, 
the world will end. It is not clear whether Lucas invented this legend or was 
inspired by it.
(from http://en.wikipedia.org/wiki/Tower_of_Hanoi)

• Rules of the puzzle:
– A complete tower of disks must be moved

from one post to another.

– Only one disk can be moved at a time.

– No disk can be placed on top of a smaller disk.
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Not allowed !
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Tower of Hanoi

• What rules determine the next move?

• How many moves do we need?

• There is no trivial iterative solution.
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Tower of Hanoi
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Inductive reasoning: assume that we know how to solve Hanoi for n-1 disks
•  Hanoi(n-1) from left to middle (safe: the largest disk is always at the bottom)
•  Move the largest disk from the left to the right
•  Hanoi(n-1) from the middle to the right (safe: the largest disk is always at the bottom)



Tower of Hanoi
// Pre:  n is the number of disks (n≥0).
//       from, to and aux are the names of the pegs.
// Post: solves the Tower of Hanoi by moving n disks
//       from peg from to peg to using peg aux

void Hanoi(int n, char from, char to, char aux) {
    if (n == 1)
        cout << “Move disk from “ << from
             << “ to “ << to << endl;

 else {
        Hanoi(n - 1, from, aux, to);
        cout << “Move disk from “ << from
             << “ to “ << to << endl;
        Hanoi(n - 1, aux, to, from);

 }
}
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Tower of Hanoi

// Main program to solve the Tower of Hanoi
// for any number of disks

int main() {
    int Ndisks;

    // Read the number of disks
    cin >> Ndisks;

    // Solve the puzzle
    Hanoi(Ndisks, ‘L’, ‘R’, ‘M’);
}
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Tower of Hanoi
> Hanoi
5
Move disk from L to R
Move disk from L to M
Move disk from R to M
Move disk from L to R
Move disk from M to L
Move disk from M to R
Move disk from L to R
Move disk from L to M
Move disk from R to M
Move disk from R to L
Move disk from M to L
Move disk from R to M
Move disk from L to R
Move disk from L to M
Move disk from R to M
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Move disk from L to R
Move disk from M to L
Move disk from M to R
Move disk from L to R
Move disk from M to L
Move disk from R to M
Move disk from R to L
Move disk from M to L
Move disk from M to R
Move disk from L to R
Move disk from L to M
Move disk from R to M
Move disk from L to R
Move disk from M to L
Move disk from M to R
Move disk from L to R



Tower of Hanoi
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Hanoi(2,’L',’M’,’R’)

Hanoi(2,’M’,’R’,’L’)

Hanoi(3,’L’,’R’,’M’) L → R



Tower of Hanoi
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Hanoi(3,’L’,’R’,’M’) L → R

Hanoi(2,’L’,’M’,’R’)

Hanoi(2,’M’,’R’,’L’)

Hanoi(1,’L’,’R’,’M’)

Hanoi(1,’R’,’M’,’L’)

Hanoi(1,’M’,’L’,’R’)

Hanoi(1,’L’,’R’,’M’)

L → M

M → R

L → R

R → M

M → L

L → R



Tower of Hanoi

• How many moves do we need for n disks?

         Moves(n) = 1 + 2*Moves(n-1)
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n Moves(n)

1 1

2 3

3 7

4 15

5 31

6 63

n 2n-1



Tower of Hanoi
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n time(s) time

1 2¹-1 1s

5 2⁵-1 31s

10 210-1 17m 3s

20 220-1 12d 3h 16m 15s

30 230-1 > 34y

40 240-1 > 34,000y

60 260-1 > 36,000,000,000y

•

•  Let us assume that 
we can move one disk 
every second.

•  How long would it 
take to move n disks?



Digital root

• The digital root (or the repeated digital sum) of a 
number is the number obtained by adding all the 
digits, then adding the digits of that number, and 
then continuing until a single-digit number is 
reached.

• For example, the digital root of 65536 is 7, because
6 + 5 + 5 + 3 + 6 = 25 and 2 + 5 = 7.
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Digital root

• Basic case: n can be represented as a single-
digit number →  return n

• General case: n has more than one digit
– Calculate the sum of the digits

– Calculate the digital root of the sum 
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Digital root

// Assume we have a function (to be defined)
// that calculates the sum of the digits of a number
int sumdigits(int n);

// Pre:  n ≥ 0
// Post: returns the digital root of n
int digital_root(int n) {
    if (n < 10) 

 return n;
    else 

 return digital_root(sumdigits(n));
}
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Write a number n in base b

• Design a program that writes a number n in 
base b.

• Examples:

 1024 is 10000000000 in base 2
             1101221 in base 3
                2662 in base 7
                1024 in base 10
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Write a number n in base b

• Basic case: n < b → if the number is smaller than 
the base, then it can be written with a single digit in 
that base

• General case: n > 0
– Write the leading digits of the number (n/b)

– Write the last digit of the number (n%b)
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Write a number n in base b
// Writes the representation of n in 
// base b (n ≥ 0, 2<=b<=10)
void write_base(int n, int b) {
    if (n < b) 
        cout << n;

 else {
        write_base(n/b, b);
        cout << n%b;
    }
}
// Input: read two numbers, n and b, with n≥0 and 2<=b<= 10
// Output: the representation of n in base b is written
int main() {
    int n, b;
    cin >> n >> b;
    write_base(n, b);
    cout << endl;
}
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