
Introduction to Programming
(in C++)

Vectors

Jordi Cortadella, Ricard Gavaldà, Fernando Orejas

Dept. of Computer Science, UPC

Outline

• Vectors

• Searching in vectors

Introduction to Programming © Dept. CS, UPC 2

Vectors
• A vector is a data structure that groups values of the

same type under the same name.

• Declaration: vector<type> name(n);

• A vector contains n elements of the same type
(n can be any expression).

• name[i] refers to the i-th element of the vector
(i can also be any expression)

• Note: use #include<vector> in the program

Introduction to Programming © Dept. CS, UPC 3

0 1 n-2 n-1

name:

Normalizing a sequence
• Write a program that normalizes a sequence (i.e. subtracts the minimum

value from all the elements in the sequence)

• The input and output sequences will be preceded by the number of
elements in the sequence.

Input: 8 6 8 7 10 4 9 5 7
Output: 8 2 4 3 6 0 5 1 3

• The program cannot read the sequence more than once.

Introduction to Programming © Dept. CS, UPC 4

6
8 7

10

4

9

5
7

2
4 3

6

0

5

1
3

Input:

Output:

Normalizing a sequence
// Input: a sequence of numbers preceded by the length of the
// sequence (there is at least one element in the sequence)
// Output: the normalized input sequence (subtracting the minimum
// element from each element in the sequence)
int main() {

int n;
cin >> n;
// Store the sequence in a vector
vector<int> S(n);
for (int i = 0; i < n; ++i) cin >> S[i];

// Calculate the minimum value
int m = S[0];
for (int i = 1; i < n; ++i) {

if (S[i] < m) m = S[i];
}

// Write the normalized sequence
cout << n;
for (int i = 0; i < n; ++i) cout << “ “ << S[i] - m;
cout << endl;

}

Introduction to Programming © Dept. CS, UPC 5

Can we do this
more efficiently?

Min value of a vector

// Pre: A is a non-empty vector

// Returns the min value of the vector

int minimum(const vector<int>& A) {

int n = A.size();

int m = A[0]; // visits A[0]

// loop to visit A[1..n-1]

for (int i = 1; i < n; ++i) {

if (A[i] < m) m = A[i];

}

return m;

}

Introduction to Programming © Dept. CS, UPC 6

Vectors
• Vectors introduce some issues that must be taken into

account:

– a reference to a vector may not always exist. For example, if i=25 and
vector x has 10 elements, then the reference x[i] does not exist.

– So far, if x and y are two variables with different names, it can be
assumed that they are different and independent objects. The only
exception is when the alias effect is produced in the call to a function
or procedure. For example:

Introduction to Programming © Dept. CS, UPC 7

int main() {

int n;

...

S(n,n)

...

}

Vectors

• if S is the procedure, then x and y become aliases of the
same object (i.e., they represent the same object):

void S(int& x, int& y) {

x = 4;

y = 5;

cout << x; // Writes 5

...

}

• When using vectors, x[i] and x[j] can be aliases if i and j
have the same value. For example:

i = 4;

j = 3;

A[i] = 5;

A[j + 1] = 6;
cout << A[i]; // Writes 6

Introduction to Programming © Dept. CS, UPC 8

Vectors

• When a variable x has a simple type (e.g. int, char, …), the
variable represents the same object during the whole
execution of the program. However, when a vector x is
used, the reference x[i] may represent different objects
along the execution of the program. For example:

vector<int> x(5);

...

x[x[0]] = 1;

cout << x[x[0]]; // What does this write?

Introduction to Programming © Dept. CS, UPC 9

Vectors

vector<int> x(5);

x[0] = 0;

x[1] = 0;

x[2] = 0;

x[3] = 0;

x[4] = 0;

x[x[0]] = 1;

cout << x[x[0]]; // Writes 0

Introduction to Programming © Dept. CS, UPC 10

Constant parameters and variables
• A call-by-value parameter requires a copy of the parameter from

the caller to the callee. It may be inefficient if the parameter is large
(e.g. a large vector).

• Call-by-reference can be more efficient, but the callee may
unexpectedly modify the parameter.

• const parameters can be passed by reference and be protected
from any modification.

• How is the protection guaranteed?
– const parameters cannot be written inside the function or passed to

another function as a non-const parameter.

• const can also be applied to variables. Their value cannot change
after initialization. Use constant global variables only to declare the
constants of the program.

Introduction to Programming © Dept. CS, UPC 11

Constant parameters and variables
const double Pi = 3.14159; // Constant variable

void g(vector<int>& V) {

...

V[i] = V[i - 1] + 1; // Allowed (V is not const)

...

}

int f(const vector<int>& A) {

...

A[i] = A[i - 1] + 1; // Illegal (A is const)

g(A); // Illegal (parameter of g is not const)

Pi = 3.14; // Illegal (Pi is const)

...

}

Introduction to Programming © Dept. CS, UPC 12

Average value of a vector

• Given a non-empty vector, return the average
value of the elements in the vector.

Introduction to Programming © Dept. CS, UPC 13

// Pre: a non-empty vector A
// Returns the average value of the elements in A

double average(const vector<int>& A) {
int n = A.size();

int sum = 0;

for (int i = 0; i < n; ++i) {

sum = sum + A[i];

}

// Be careful: enforce a “double” result

return double(sum)/n;

}

Reversing a vector

• Design a procedure that reverses the contents
of a vector:

• Invariant:

Introduction to Programming © Dept. CS, UPC 14

9 -7 0 1 -3 4 3 8 -6 8 2

2 8 -6 8 3 4 -3 1 0 -7 9

2 8 0 1 -3 4 3 8 -6 -7 9

i last-i
0 last

reversed reversednot reversed

Reversing a vector
// Pre: -
// Post: A contains the reversed contents
// of the input vector

void reverse(vector<int>& A) {
int last = A.size() - 1;
// Calculate the last location to reverse
int middle = A.size()/2 - 1;

// Reverse one half with the other half
for (int i = 0; i <= middle; ++i) {

int z = A[i];
A[i] = A[last - i];
A[last - i] = z;

}
}

Introduction to Programming © Dept. CS, UPC 15

Reversing a vector (another version)
// Pre: -
// Post: A contains the reversed contents
// of the input vector

void reverse(vector<int>& A) {
int i = 0;
int last = A.size() - 1;
// Inv: The elements in A[0…i-1] have been
// reversed with the elements in
// A[last+1…A.size()-1]
while (i < last) {

int z = A[i];
A[i] = A[last];
A[last] = z;
i = i + 1;
last = last – 1;

}
}

Introduction to Programming © Dept. CS, UPC 16

The largest null segment of a vector

• A null segment is a compact sub-vector in which the
sum of all the elements is zero.

• Let us consider vectors sorted in increasing order.

Introduction to Programming © Dept. CS, UPC 17

-9 -7 -6 -4 -3 -1 3 5 6 8 9

-9 -7 -6 -4 -3 -1 3 5 6 8 9

-9 -7 -6 -4 -3 -1 3 5 6 8 9

Null segment

Largest null segment

The largest null segment of a vector

• Observations:

– If a null segment contains non-zero elements,
then it must contain positive and negative
elements.

– Let us consider a segment of a vector. If the sum
of the elements is positive, then the largest
positive value cannot belong to any null segment
included in the segment.

– The same is true for negative numbers.

Introduction to Programming © Dept. CS, UPC 18

The largest null segment of a vector

• Invariant:

Introduction to Programming © Dept. CS, UPC 19

-9 -7 -6 -4 -3 -1 3 5 6 8 9

• The largest null segment is included in the [left…right] segment

• sum contains the sum of the elements in the [left…right] segment

left right

sum = 1

Observation: the search will finish when sum = 0.
If the segment becomes empty (no elements) the sum will become 0.

The largest null segment of a vector
// Pre: A is sorted in increasing order
// Post: <left,right> contain the indices of the
// largest null segment. In the case of an empty
// null segment, left > right.

void largest_null_segment (const vector<int>& A,
int& left, int& right)

left = 0;
right = A.size()-1;
int sum = sum_vector(A); // Calculates the sum of A
while (sum != 0) {

if (sum > 0) {
sum = sum – A[right];
right = right – 1;

}
else {

sum = sum – A[left];
left = left + 1;

}
}
// sum = 0 and the largest segment is A[left...right]

}

Introduction to Programming © Dept. CS, UPC 20

typedef

• Typedef declarations create synonyms for
existing types:

// Declaration of the type
typedef vector<double> listTemperatures;

// Declaration of a variable
listTemperatures MyTemp;

// The parameter of a function
double maxTemp(const listTemperatures& L) {

...
}

Introduction to Programming © Dept. CS, UPC 21

Polynomial evaluation (Horner’s scheme)

• Design a function that evaluates the value of a
polynomial.

• A polynomial of degree n can be represented by a
vector of n+1 coefficients (a0,…,an). It can be efficiently
evaluated using Horner’s algorithm:

𝑃 𝑥 = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎1𝑥 + 𝑎0 =

(⋯((𝑎𝑛𝑥 + 𝑎𝑛−1)𝑥 + 𝑎𝑛−2)𝑥 + ⋯)𝑥 + 𝑎0

• Example:

3𝑥3 − 2𝑥2 + 𝑥 − 4 = 3𝑥 − 2 𝑥 + 1 𝑥 − 4

Introduction to Programming © Dept. CS, UPC 22

Polynomial evaluation (Horner’s scheme)

// Definition of a polynomial (the coefficient of degree i
// is stored in location i of the vector).

typedef vector<double> Polynomial;

// Pre: -
// Returns the evaluation of P(x)
double PolyEval(const Polynomial& P, double x) {

double eval = 0;
int degree = P.size() - 1;
/ Invariant: the polynomial has been evaluated

up to the coefficient i+1 using Horner’s scheme /
for (int i = degree; i >= 0; --i) {

eval = evalx + P[i];
}
return eval;

}

Introduction to Programming © Dept. CS, UPC 23

SEARCHING IN VECTORS

Introduction to Programming © Dept. CS, UPC 24

Search in a vector

• We want to design a function that searches for a
value in a vector. The function must return the
index of the location in which the value is found.
It must return -1 if not found.

• If several locations contain the search value, it
must return the index of one of them.

Introduction to Programming © Dept. CS, UPC 25

// Pre: A is a non-empty vector
// Returns i, such that A[i] == x, if x is in A.
// Returns -1 if x is not in A.

Search in a vector

Introduction to Programming © Dept. CS, UPC 26

Invariant: x does not exist in A[0..i-1].

Note: an interval A[p..q] with p > q is assumed to be an empty interval.

3 -4 1 2 15 0 3 1 9 6 4

i

Search in a vector

// Pre: --
// Returns i, such that A[i] == x, if x is in A.
// Returns -1 if x is not in A.

int search(int x, const vector<int>& A) {

// Inv: x does not exist in A[0..i-1].
for (int i = 0; i < A.size(); ++i) {

if (A[i] == x) return i;
}

return -1;
}

Introduction to Programming © Dept. CS, UPC 27

Search with sentinel

• The previous code has a loop with two
conditions:
– i < A.size(): to detect the end of the vector
– A[i] == x: to detect when the value is found

• The search is more efficient if the first condition is
avoided (if we ensure that the value is always in
the vector).

• To enforce this condition, a sentinel may be
added in the last (unused) location of the vector.
When the sentinel is found, it indicates that the
value was not anywhere else in the vector.

Introduction to Programming © Dept. CS, UPC 28

Search with sentinel

// Returns i, such that A[i] == x, if x is in A.
// Returns -1 if x is not in A.
// Post: the vector is temporarily modified, but the
// final contents remains unchanged.

int search(int x, vector<int>& A) {
int n = A.size();
A.push_back(x); // Writes the sentinel

int i = 0;
// Inv: x does not exist in A[0..i-1]
while (A[i] != x) ++i;
A.pop_back(); // Removes the sentinel

if (i == n) return -1;
return i;

}

Introduction to Programming © Dept. CS, UPC 29

Be careful: not a
const parameter

How would you search in a dictionary?

• Dictionaries contain a list of sorted words.

• To find a word in a dictionary of 50,000 words, you
would never check the first word, then the second,
then the third, etc.

• Instead, you would look somewhere in the middle
and decide if you have to continue forwards or
backwards, then you would look again around the
middle of the selected part, go forwards/backwards,
and so on and so forth …

Introduction to Programming © Dept. CS, UPC 30

Binary search

Introduction to Programming © Dept. CS, UPC 31

-9 -7 -6 -6 -4 -1 0 1 3 4 5 5 7 8 8 9

• Is 4 in the vector?

4 is larger

-9 -7 -6 -6 -4 -1 0 1 3 4 5 5 7 8 8 9

Half of the elements have been discarded !
4 is smaller

-9 -7 -6 -6 -4 -1 0 1 3 4 5 5 7 8 8 9

Found !

Binary search

• How many iterations do we need in the worst case?

• The search will finish when only one element is left:

Introduction to Programming © Dept. CS, UPC 32

iteration 0 1 2 3 4 5 6 7 i

elements n n/2 n/4 n/8 n/16 n/32 n/64 n/128 n/2i

0

100

200

300

400

500

600

1 2 4 8 16 32 64 128 256 512

Linear search

Binary search

Binary search

Introduction to Programming © Dept. CS, UPC 33

-9 -7 -6 -6 -4 -1 0 1 3 4 5 5 7 8 8 9

left right

Invariant:

If x is in vector A, then it will be
found in fragment A[left...right]

The search will be completed when the value has
been found or the interval is empty (left > right)

Binary search

// Pre: A is sorted in ascending order,
// 0 <= left,right < A.size()
// Returns the position of x in A[left...right].
// Returns -1 if x is not in A[left...right].

int bin_search(int x, const vector<int>& A,
int left, int right) {

while (left <= right) {
int i = (left + right)/2;
if (x < A[i]) right = i – 1;
else if (x > A[i]) left = i + 1;
else return i; //Found

}

return -1;
}

Introduction to Programming © Dept. CS, UPC 34

Binary search

// The initial call to bin_search should
// request a search in the whole array

...

int i = bin_search(value, A, 0, A.size() – 1);

...

Introduction to Programming © Dept. CS, UPC 35

Binary search (recursive)

// Pre: A is sorted in ascending order,
// 0 <= left,right < A.size()
// Returns the position of x in A[left...right].
// Returns -1 if x is not in A[left...right].

int bin_search(int x, const vector<int>& A,
int left, int right) {

if (left > right) return -1;
else {

int i = (left + right)/2;
if (x < A[i]) return bin_search(x,A,left,i-1);
else if (x > A[i]) return bin_search(x,A,i+1,right);
else return i; // found

}
}

Introduction to Programming © Dept. CS, UPC 36

