
Introduction to Programming
(in C++)

Vectors and strings

Jordi Cortadella, Ricard Gavaldà, Fernando Orejas

Dept. of Computer Science, UPC

Outline

• More vector examples

• Strings

Introduction to Programming © Dept. CS, UPC 2

Classify elements

• We have a vector of elements V and an interval [x,y] (x ≤ y).
Classify the elements of the vector by putting those smaller
than x in the left part of the vector, those larger than y in the
right part and those inside the interval in the middle. The
elements do not need to be ordered.

• Example: interval [6,9]

Introduction to Programming © Dept. CS, UPC 3

15 7 3 0 10 6 11 9 1 13

1 3 0 7 9 6 11 10 13 15

Classify elements
• Invariant:

• At each iteration, we treat the element in the middle
– If it is smaller, swap the elements in left and the middle (left, mid)
– If larger, swap the elements in the middle and the right (right)
– If inside, do not move the element (mid)

• End of classification: when mid > right.
Termination is guaranteed since mid and right get closer at each
iteration.

• Initially: left = mid = 0, right = size-1

Introduction to Programming © Dept. CS, UPC 4

smaller inside not treated yet larger

left mid right

Classify elements
// Pre: x <= y
// Post: the elements of V have been classified moving those
// smaller than x to the left, those larger than y to the
// right and the rest in the middle.

void classify(vector<int>& V, int x, int y) {
int left = 0;
int mid = 0;
int right = V.size() - 1;

// Invariant: see the previous slide
while (mid <= right) {

if (V[mid] < x) { // Put in the left part
swap(V[mid], V[left]);
left = left + 1;
mid = mid + 1;

} else if (V[mid] > y) { // Put in the right part
swap(V[mid], V[right]);
right = right – 1;

} else mid = mid + 1; // Put in the middle
}

}

Introduction to Programming © Dept. CS, UPC 5

Palindrome vector

• Design a function that checks whether a
vector is a palindrome (the reverse of the
vector is the same as the vector). For example:

is a palindrome.

Introduction to Programming © Dept. CS, UPC 6

9 -7 0 1 -3 4 -3 1 0 -7 9

Palindrome vector

bool palindrome(const vector<int>& A);

// Pre: --
// Returns true if A is a palindrome, and false otherwise.

Introduction to Programming © Dept. CS, UPC 7

2 8 0 1 -3 4 3 1 0 8 2

i k

Invariant:

The fragments A[0..i-1] and A[k+1..A.size()-1] are reversed

Palindrome vector
// Pre: --
// Returns true if A is a palindrome,
// and false otherwise.

bool palindrome(const vector<int>& A) {
int i = 0;
int k = A.size() - 1;

while (i < k) {
if (A[i] != A[k]) return false;
else {

i = i + 1;
k = k – 1;

}
}
return true;

}

Introduction to Programming © Dept. CS, UPC 8

Peaks of a vector

• Design a function that counts the number of peaks of a
vector. A peak is the last element of a strictly increasing
sequence and the first element of a strictly decreasing
sequence, or vice versa. The extremes of a vector are not
considered peaks. For example, the following vector has
5 peaks (in blue):

Introduction to Programming © Dept. CS, UPC 9

3 -2 -2 1 -3 2 -3 1 1 -2 2

Peaks of a vector

// Pre: --
// Returns the number of peaks of A.
int peaks(const vector<int>& A);

Introduction to Programming © Dept. CS, UPC 10

i

Invariant:

p is the number of peaks
between locations 0 and i-1

9 -7 -7 1 -3 2 -3 1 1 -7 9

Peaks of a vector

// Pre: --
// Returns the number of peaks of A.

int peaks(const vector<int>& A) {
int p = 0;
int n = A.size();
for (int i = 1; i < n - 1; ++i) {

if (A[i - 1] < A[i] and A[i] > A[i + 1]) or
(A[i - 1] > A[i] and A[i] < A[i + 1]) {
p = p + 1;

}
}
return p;

}

Introduction to Programming © Dept. CS, UPC 11

Common elements

• Design a function that counts the number of common
elements of two vectors sorted in strict ascending order
(the vectors cannot contain repetitions).

• Example: the two vectors below have 5 common
elements.

Introduction to Programming © Dept. CS, UPC 12

-8 -5 -4 1 3 6 8 9 11 12 17

-9 -7 -5 -1 3 4 5 8 11 17 19

Common elements
// Pre: A and B are two vectors sorted in strict ascending order.
// Returns the number of common elements of A and B.
int common(const vector<int>& A, const vector<int>& B);

Introduction to Programming © Dept. CS, UPC 13

k

Invariant:

• n is the number of common elements of A[0..i-1] and B[0..k-1].

• All the visited elements are smaller than the non-visited ones.

-8 -5 -4 1 3 6 8 9 11 12 17

i

-9 -7 -5 -1 3 4 5 8 11 17 19

Common elements
// Pre: A and B are two vectors sorted in strict ascending order.

// Returns the number of common elements of A and B.

int common(const vector<int>& A, const vector<int>& B) {

int i, k, n;

i = k = n = 0;

while (i < A.size() and k < B.size()) {

if (A[i] < B[k]) i = i + 1;

else if (A[i] > B[k]) k = k + 1;

else {

i = i + 1;

k = k + 1;

n = n + 1;

}

}

return n;

}

Introduction to Programming © Dept. CS, UPC 14

Vector fusion

• Design a function that returns the fusion of two ordered
vectors. The returned vector must also be ordered. For
example, C is the fusion of A and B:

Introduction to Programming © Dept. CS, UPC 15

-9 -7 0 1 3 4

-8 -7 1 2 2 4 5

-9 -8 -7 -7 0 1 1 2 2 3 4 4 5

A

B

C

push_back and pop_back operations

Introduction to Programming © Dept. CS, UPC 16

vector<int> a; // a.size()=0

a.push_back(3);
a.push_back(5);
a.push_back(8);

// a = [3, 5, 8]; a.size()=3

a.pop_back();

// a = [3, 5]; a.size()=2

Vector fusion
// Pre: A and B are sorted in ascending order.
// Returns the sorted fusion of A and B.
vector<int> fusion(const vector<int>& A, const vector<int>& B);

Introduction to Programming © Dept. CS, UPC 17

j

Invariant:

• C contains the fusion of A[0..i-1] and B[0..j-1]

• All the visited elements are smaller than or equal to the non-visited ones.

i

-9 -7 0 1 3 4

-8 -7 1 2 2 4 5

-9 -8 -7

A

B

C

Vector fusion
// Pre: A and B are sorted in ascending order.
// Returns the sorted fusion of A and B.

vector<int> fusion(const vector<int>& A, const vector<int>& B) {
vector<int> C;
int i = 0, j = 0;
while (i < A.size() and j < B.size()) {

if (A[i] <= B[j]) {
C.push_back(A[i]);
i = i + 1;

} else {
C.push_back(B[j]);
j = j + 1;

}
}

while (i < A.size()) {
C.push_back(A[i]);
i = i + 1;

}
while (j < B.size()) {

C.push_back(B[j]);
j = j + 1;

}
return C;

}

Introduction to Programming © Dept. CS, UPC 18

Difference between two vectors

• Design a function that returns an ordered vector C
containing the difference between two ordered vectors,
A and B (all the elements in A that are not in B).

• Example:

Introduction to Programming © Dept. CS, UPC 19

-9 -7 0 0 1 3 4 4

-8 -7 1 2 2 4 5

-9 0 0 3

A

B

C

Difference between two vectors
// Pre: A and B are sorted in ascending order.
// Returns the sorted difference between A and B.
vector<int> diff(const vector<int>& A, const vector<int>& B);

Introduction to Programming © Dept. CS, UPC 20

j

Invariant: i

-9 -7 0 1 3 4

-8 -7 1 2 2 4 5

A

B

C -9

• C is the difference between A[0..i-1] and B[0..j-1]

• All the visited elements are smaller than or equal to the non-visited ones.

Difference between two vectors
// Pre: A and B are sorted in ascending order.
// Returns the sorted difference between A and B.
vector<int> diff(const vector<int>& A, const vector<int>& B) {

vector<int> C;
int i = 0, j = 0;
while (i < A.size() and j < B.size()) {

if (A[i] == B[j]) i = i + 1;
else if (A[i] > B[j]) j = j + 1;
else {

C.push_back(A[i]);
i = i + 1;

}
}

while (i < A.size()) {
C.push_back(A[i]);
i = i + 1;

}

return C;
}

Introduction to Programming © Dept. CS, UPC 21

STRINGS

Introduction to Programming © Dept. CS, UPC 22

Strings

• Strings can be treated as vectors of characters.

• Variables can be declared as follows:

– string s1;

– string s2 = “abc”;

– string s3(10,'x');

• Do not forget to #include <string> in the
header of your program.

Introduction to Programming © Dept. CS, UPC 23

Strings

• Examples of the operations we can do on
strings:

– Comparisons: ==, !=, <, >, <=, >=
Order relation assuming lexicographical order.

– Access to an element of the string: s3[i]

– Length of a string: s.length()

Introduction to Programming © Dept. CS, UPC 24

Hybrid animals
• Given the name of two animals, a hybrid can be formed if the

last two letters of one of them coincide with the first two
letters of the other one. In this case, the name of the hybrid
animal is created by concatenating the two names, except for
the first two letters of the second animal.

• Design a procedure that writes the names all possible hybrid
animals from a vector of names of animals. We will assume
that an animal cannot form a hybrid with itself.

Introduction to Programming © Dept. CS, UPC 25

camel elephant

camelephant

zebra rabbit

zebrabbit

Hybrid animals
// Pre: --
// Post: all the possible hybrid animals from A
// have been written.

void hybrid_animals(const vector<string>& A);

Introduction to Programming © Dept. CS, UPC 26

i

Solution 1:

Index i traverses the names of the first animal,
whereas index j traverses the names of the second animal.

rabbit lion turtle zebra leopard

j

Hybrid animals
// Pre: --
// Post: all possible hybrid animals from A have been written.

void hybrid_animals(const vector<string>& A) { // Solution 1

// i traverses the names of the first animal
// j traverses the names of the second animal
for (int i = 0; i < A.size(); ++i) {

for (int j = 0; j < A.size(); ++j) {
// there_is_hybrid checks whether a hybrid
// between A[i] and A[j] is possible
if (i != j and there_is_hybrid(A[i], A[j])) {

// hybrid returns the string with the hybrid name
cout << hybrid(A[i], A[j]) << endl;

}
}

}
}

Introduction to Programming © Dept. CS, UPC 27

Hybrid animals
// Pre: --
// Post: all the possible hybrid animals from A have been written.
void hybrid_animals(const vector<string>& A);

Introduction to Programming © Dept. CS, UPC 28

i

Solution 2:

Indices i and j traverse the names of the animals
and check for hybrids between them in both orders.

rabbit lion turtle zebra leopard

j

Hybrid animals
// Pre: --
// Post: all possible hybrid animals from A have been written.

void hybrid_animals(const vector<string>& A) { // Solution 2

// i and j traverse all pairs of animals (without repetition)
for (int i = 1; i < A.size(); ++i) {

for (int j = 0; j < i; ++j) {
if (there_is_hybrid(A[i], A[j])) {

cout << hybrid(A[i], A[j]) << endl;
}
if (there_is_hybrid(A[j], A[i])) {

cout << hybrid(A[j], A[i]) << endl;
}

}
}

}

Introduction to Programming © Dept. CS, UPC 29

Hybrid animals

// Pre: --
// Returns true if s1 and s2 can form a hybrid name,
// and false otherwise
bool there_is_hybrid(string s1, string s2) {

int ls1 = s1.length();
int ls2 = s2.length();
if (ls1 < 2 or ls2 < 2) return false;
else return (s1[ls1-2] == s2[0]) and (s1[ls1-1] == s2[1]);

}

// Pre: s1 and s2 can form a hybrid.
// Returns the hybrid of s1 and s2.
string hybrid(string s1, string s2) {

for (int i = 2; i < s2.length(); ++i) s1.push_back(s2[i]);
return s1;

}

Introduction to Programming © Dept. CS, UPC 30

Finding a substring in a string

• String x appears as a substring of string y at position i
if y[i…i+x.size()-1] = x

• Example: “tree” is the substring of “the tree there” at
position 4.

• Problem: given x and y, return the smallest i such
that x is the substring of y at position i. Return -1 if x
does not appear in y.

Introduction to Programming © Dept. CS, UPC 31

Finding a substring in a string

• Solution: search for such i

• For every i, check whether x = y[i..i+x.size()-1]

• In turn, this is a search for a possible mismatch
between x and y: a position j where x[j] y[i+j]

• If there is no mismatch, we have found the desired i.
As soon as a mismatch is found, we proceed to the
next i.

Introduction to Programming © Dept. CS, UPC 32

Finding a substring in a string

// Pre: --

// Returns the smallest i such that x=y[i..i+x.size()-1].

// Returns -1 if x does not appear in y.

int substring(const string& x, const string& y);

Introduction to Programming © Dept. CS, UPC 33

Finding a substring in a string
int substring(const string& x, const string& y) {

int i = 0;

// Inv: x is not a substring of y at positions 0..i-1
while (i + x.size() <= y.size()) {

int j = 0;
bool matches = true;
// Inv: … and x[0..j-1] == y[i..i+j-1]
while (matches and j < x.size()) {

matches = (x[j] == y[i + j]);
++j;

}
if (matches) return i;
else ++i;

}

return -1;
}

Introduction to Programming © Dept. CS, UPC 34

Finding a substring in a string

• When a mismatch is found (x[j] y[i+j]) we must
proceed to i+1, not to i+j.

• Example:

X = “papageno”, Y = “papapageno”

– Consider i=0.

– X[0..3] matches Y[0..3], mismatch at X[4]Y[4]

– If we continue searching at i=4, we miss the
occurrence of X in Y.

Introduction to Programming © Dept. CS, UPC 35

Finding a substring in a string

• A more compact, but more cryptic solution, with one loop.

Introduction to Programming © Dept. CS, UPC 36

int substring(const string& x, const string& y) {
int i, j;
i = j = 0;
// Inv: x[0..j-1] == y[i..i+j-1]
// and x does not appear in y in positions 0..i-1
while (i + x.size() <= y.size() and j < x.size()) {

if (x[j] == y[i + j]) ++j;
else {

j = 0;
++i;

}
}
if (j == x.size()) return i;
else return -1;

}

Anagrams

• An anagram is a pair of sentences (or words) that contain
exactly the same letters, even though they may appear in
a different order.

• Example:

AVE MARIA, GRATIA PLENA, DOMINUS TECUM

VIRGO SERENA, PIA, MUNDA ET IMMACULATA

• Design a program that reads two sentences that end in ‘.’
and tells whether they are an anagram.

// Pre: the input contains two sentences that end in ‘.’
// Post: the output tells whether they are an anagram.

Introduction to Programming © Dept. CS, UPC 37

Anagrams

• A possible strategy for solving the problem could
be as follows:

– First, we read the first sentence and count the number
of occurrences of each letter. The occurrences can be
stored in a vector.

– Next, we read the second sentence and discount the
appearance of each letter.

– If a counter becomes negative, the sentences are not
an anagram.

– At the end, all occurrences must be zero.

Introduction to Programming © Dept. CS, UPC 38

Anagrams
int main() {

const int N = int('z') - int('a') + 1;

vector<int> count(N, 0);

char c;

cin >> c;

// Read the first sentence

while (c != '.') {

if (c >= 'a' and c <= 'z') ++count[int(c)-int('a')];

else if (c >= 'A' and c <= 'Z') ++count[int(c)-int('A')];

cin >> c;

}

Introduction to Programming © Dept. CS, UPC 39

Anagrams
// Read the second sentence

cin >> c;
bool is_anagram = true;
while (is_anagram and c != '.') {

if (c >= 'a' and c <= 'z') c = c – int('a') + int('A');
if (c >= 'A' and c <= 'Z') { // Discount if it is a letter

int i = int(c) - int(‘A’);
--count[i];
is_anagram = count[i] >= 0;

}
cin >> c;

}

// Check that the two sentences are an anagram
int i = 0;
while (is_anagram and i < N) {

is_anagram = count[i] == 0;
i = i + 1;

}
cout << is_anagram;

}

Introduction to Programming © Dept. CS, UPC 40

