Introduction to Programming (in $\mathrm{C}++$)

Numerical algorithms

Jordi Cortadella, Ricard Gavaldà, Fernando Orejas
Dept. of Computer Science, UPC

Product of polynomials

- Given two polynomials on one variable and real coefficients, compute their product
(we will decide later how we represent polynomials)
- Example: given $x^{2}+3 x-1$ and $2 x-5$, obtain

$$
2 x^{3}-5 x^{2}+6 x^{2}-15 x-2 x+5=2 x^{3}+x^{2}-17 x+5
$$

Product of polynomials

- Key point:

Given $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$
and $q(x)=b_{m} x^{m}+b_{m-1} x^{m-1}+\ldots+b_{1} x+b_{0}$,
what is the coefficient c_{i} of x^{i} in $\left(p^{*} q\right)(x)$?

- We obtain x^{i+j} whenever we multiply $a_{i} x^{i} \cdot b_{j} x^{j}$
- Idea: for every i and j, add $\mathrm{a}_{\mathrm{i}} \cdot \mathrm{b}_{\mathrm{j}}$ to the ($\mathrm{i}+\mathrm{j}$)-th coefficient of the product polynomial.

Product of polynomials

- Suppose we represent a polynomial of degree n by a vector of size $n+1$.

That is, $\mathrm{v}[0 . . \mathrm{n}]$ represents the polynomial

$$
v[n] x^{n}+v[n-1] x^{n-1}+\ldots+v[1] x+v[0]
$$

- We want to make sure that $\mathrm{v}[\mathrm{v} . \operatorname{size}()-1] \neq 0$ so that degree(v) = v.size() - 1
- The only exception is the constant-0 polynomial. We'll represent it by a vector of size 0 .

Product of polynomials

typedef vector<double> Polynomial;
// Pre: --
// Returns p*q
Polynomial product(const Polynomial\& p,
const Polynomial\& q);

Product of polynomials

Polynomial product(const Polynomial\& p, const Polynomial\& q) \{

```
    // Special case for a polynomial of size 0
    if (p.size() == 0 or q.size() == 0) return Polynomial(0);
    else {
        int deg = p.size() - 1 + q.size() - 1; // degree of p*q
        Polynomial r(deg + 1, 0);
        for (int i = 0; i < p.size(); ++i) {
        for (int j = 0; j < q.size(); ++j) {
        r[i + j] = r[i + j] + p[i]*q[j];
        }
    }
    return r;
}
}
```

// Invariant (of the outer loop): r = product p[0..i-1]*q
// (we have used the coefficients p[0] ... p[i-1])

Sum of polynomials

- Note that over the real numbers, degree $(p * q)=\operatorname{degree}(p)+\operatorname{degree}(q)$
(except if $p=0$ or $q=0$).

So we know the size of the result vector from the start.

- This is not true for the polynomial sum, e.g.

$$
\text { degree }((x+5)+(-x-1))=0
$$

Sum of polynomials

```
// Pre: --
// Returns p+q
Polynomial sum(const Polynomial\& p, const Polynomial\& q);
    int maxdeg = max(p.size(), q.size()) - 1;
    int deg = -1;
    Polynomial r(maxdeg + 1, 0);
    // Inv r[0..i-1] = (p+q)[0..i-1] and
    // deg = largest j s.t. r[j] != 0 (or -1 if none exists)
    for (int \(i=0 ; i<=\) maxdeg; ++i) \{
        if (i >= p.size()) r[i] = q[i];
        else if (i >= q.size()) r[i] = \(p[i] ;\)
        else \(r[i]=p[i]+q[i] ;\)
        if (r[i] != 0) deg = i;
    \}
    Polynomial rr(deg + 1);
    for (int i = 0; i <= deg; ++i) rr[i] = r[i];
    return rr;

\section*{Sum of sparse vectors}
- In some cases, problems must deal with sparse vectors or matrices (most of the elements are zero).
- Sparse vectors and matrices can be represented more efficiently by only storing the non-zero elements. For example, a vector can be represented as a vector of pairs (index, value), sorted in ascending order of the indices.
- Example:
\[
[0,0,1,0,-3,0,0,0,2,0,0,4,0,0,0]
\]
can be represented as
\([(2,1),(4,-3),(8,2),(11,4)]\)

\section*{Sum of sparse vectors}
- Design a function that calculates the sum of two sparse vectors, where each non-zero value is represented by a pair (index, value):
struct Pair \{
int index;
int value;
\}
typedef vector<Pair> SparseVector;

\section*{Sum of sparse vectors}
// Pre: --
// Returns v1+v2

SparseVector sparse_sum(const SparseVector\& v1, const SparseVector\& v2);
// Inv: p1 and p2 will point to the first
// non-treated elements of v1 and v2.
// vsum contains the elements of v1+v2 treated so far.
// psum points to the first free location in vsum.
- Strategy:
- Calculate the sum on a sufficiently large vector.
- Copy the result on another vector of appropriate size.

\section*{Sum of sparse vectors}
```

SparseVector sparse_sum(const SparseVector\& v1, const SparseVector\& v2) {
SparseVector vsum;
int p1 = 0, p2 = 0;
while (p1 < v1.size() and p2 < v2.size()) {
if (v1[p1].index < v2[p2].index) { // Element only in v1
vsum.push_back(v1[p1]);
++p1;
}
else if (v1[p1].index > v2[p2].index) { // Element only in v2
vsum.push_back(v2[p2]);
++p2;
}
else { // Element in both
Pair p;
p.index = v1[p1].index;
p.value = v1[p1].value + v2[p2].value;
if (p.value != 0) vsum.push_back(p);
++p1; ++p2;
}
}

```

\section*{Sum of sparse vectors}
```

 // Copy the remaining elements of v1
 while (p1 < v1.size()) {
 vsum.push_back(v1[p1]);
 ++p1;
 }
// Copy the remaining elements of v2
while (p2 < v2.size()) {
vsum.push_back(v2[p2]);
++p2;
}
return vsum;
}

```

\section*{Root of a continuous function}

\section*{Bolzano's theorem:}

Let \(f\) be a real-valued continuous function.
Let \(a\) and \(b\) be two values such that \(a<b\) and \(f(a) \cdot f(b)<0\).
Then, there is a value \(c \in[a, b]\) such that \(f(c)=0\).


\section*{Root of a continuous function}

Design a function that finds a root of a continuous function \(f\) in the interval \([a, b]\) assuming the conditions of Bolzano's theorem are fulfilled. Given a precision ( \(\varepsilon\) ), the function must return a value \(c\) such that the root of \(f\) is in the interval \([c, c+\varepsilon\) ].


\section*{Root of a continuous function}

Strategy: narrow the interval \([a, b]\) by half, checking whether the value of \(f\) in the middle of the interval is positive or negative. Iterate until the width of the interval is smaller \(\varepsilon\).


\section*{Root of a continuous function}
// Pre: \(f\) is continuous, \(a<b\) and \(f(a) * f(b)<0\). // Returns \(c \in[a, b]\) such that a root exists in the // interval [c,c+e].
// Inv: a root of \(f\) exists in the interval [a,b]


\section*{Root of a continuous function}
double root(double a, double b, double epsilon) \{
\[
\begin{aligned}
& \text { while }(b-a>e p s i l o n)\{ \\
& \quad \text { double } c=(a+b) / 2 ; \\
& \text { if }(f(a) * f(c)<=0) b=c ; \\
& \text { else } a=c ;
\end{aligned}
\]
\}
return a;
\}

\section*{Root of a continuous function}

\section*{// A recursive version}
double root(double a, double b, double epsilon) \{ if (b - a <= epsilon) return a; double c = (a + b)/2; if (f(a)*f(c) <= 0) return root(a,c,epsilon); else return root(c,b,epsilon);
\}

\section*{Barcode}
- A barcode is an optical machine-readable representation of data. One of the most popular encoding systems is the UPC (Universal Product Code).
- A UPC code has 12 digits. Optionally, a check digit can be added.


\section*{Barcode}
- The check digit is calculated as follows:
1. Add the digits in odd-numbered positions (first, third, fifth, etc.) and multiply by 3.
2. Add the digits in the even-numbered positions (second, fourth, sixth, etc.) to the result.
3. Calculate the result modulo 10.
4. If the result is not zero, subtract the result from 10.
- Example: 380006571113
> \((3+0+0+5+1+1) * 3=30\)
\(>8+0+6+7+1+3=25\)
\(>(30+25) \bmod 10=5\)
> \(10-5=\mathbf{5}\)

\section*{Barcode}
- Design a program that reads a sequence of 12-digit numbers that represent UPCs without check digits and writes the same UPCs with the check digit.
- Question: do we need a data structure to store the UPCs?
- Answer: no, we only need a few auxiliary variables.

\section*{Barcode}
- The program might have a loop treating a UPC at each iteration. The invariant could be as follows:
// Inv: all the UPCs of the treated codes // have been written.
- At each iteration, the program could read the UPC digits and, at the same time, write the UPC and calculate the check digit. The invariant could be:
// Inv: all the treated digits have been // written. The partial calculation of // the check digit has been performed // based on the treated digits.

\section*{Barcode}
// Pre: the input contains a sequence of UPCs without check digits. // Post: the UPCs at the input have been written with their check digits.
```

int main() {
char c;
while (cin >> c) {
cout << c;
int d = 3*(int(c) - int('0')); // first digit in an odd location
for (int i = 2; i <= 12; ++i) {
cin >> c;
cout << c;
if (i%2 == 0) d = d + int(c) - int('0');
else d = d + 3*(int(c) - int('0'));
}
d = d%10;
if (d > 0) d = 10 - d;
cout << d << endl;
}
}

```
```

