
Introduction to Programming
(in C++)

Advanced examples

Jordi Cortadella, Ricard Gavaldà, Fernando Orejas

Dept. of Computer Science, UPC

Sports tournament
• Design a program that reads the participants in a knockout

tournament and the list of results for each round. The program
must write the name of the winner.

• Assumptions:
– The number of participants is a power of two.
– The list represents the participation order, i.e. in the first round, the

first participant plays with the second, the third with the fourth, etc. In
the second round, the winner of the first match plays against the
winner of the second match, the winner of the third match plays
against the winner of the fourth match, etc. At the end, the winner of
the first semi-final will play against the winner of the second semi-
final.

• The specification of the program could be as follows:

// Pre: the input contains the number of players,
// the players and the results of the tournament.
// Post: the winner has been written at the output.

Introduction to Programming © Dept. CS, UPC 2

Sports tournament

Nadal – Djokovic
3-0

Nadal – Berdych
3-1

Nadal – Murray
2-0

Berdych – Soderling
3-1

Federer – Djokovic
2-3

Federer – Ferrer
3-1

Djokovic – Roddick
3-2

Introduction to Programming © Dept. CS, UPC 3

• Input (example):

8 Nadal Murray Berdych Soderling Federer
Ferrer Djokovic Roddick
2 0 3 1 3 1 3 2 3 1 2 3 3 0

Sports tournament

• A convenient data structure that would enable an
efficient solution would be a vector with 2n-1
locations (n is the number of participants):

– The first n locations would store the participants.

– The following n/2 locations would store the winners of
the first round.

– The following n/4 locations would store the winners of
the second round, etc.

– The last location would store the name of the winner.

Introduction to Programming © Dept. CS, UPC 4

Sports tournament

• Input:

8

Nadal Murray Berdych
Soderling Federer Ferrer
Djokovic Roddick

2 0 3 1 3 1 3 2 3 1 2 3 3 0

Nadal

Murray

Berdych

Soderling

Federer

Ferrer

Djokovic

Roddick

Nadal

Berdych

Federer

Djokovic

Nadal

Djokovic

Nadal

Introduction to Programming © Dept. CS, UPC 5

First
round

Second
round

Third
round

Winner

Sports tournament

• The algorithm could run as follows:

– First, it reads the number of participants and their
names. They will be stored in the locations 0…n-1 of
the vector.

– Next, it fills up the rest of the locations. Two pointers
might be used. The first pointer (j) points at the
locations of the players of a match. The second
pointer (k) points at the location where the winner
will be stored.

// Inv: players[n..k-1] contains the
// winners of the matches stored
// in players[0..j-1]

Introduction to Programming © Dept. CS, UPC 6

Sports tournament
Nadal

Murray

Berdych

Soderling

Federer

Ferrer

Djokovic

Roddick

Introduction to Programming © Dept. CS, UPC 7

Nadal

Murray

Berdych

Soderling

Federer

Ferrer

Djokovic

Roddick

Nadal

Nadal

Murray

Berdych

Soderling

Federer

Ferrer

Djokovic

Roddick

Nadal

Berdych

Nadal

Murray

Berdych

Soderling

Federer

Ferrer

Djokovic

Roddick

Nadal

Berdych

Federer

Nadal

Murray

Berdych

Soderling

Federer

Ferrer

Djokovic

Roddick

Nadal

Berdych

Federer

Djokovic

Nadal

Murray

Berdych

Soderling

Federer

Ferrer

Djokovic

Roddick

Nadal

Berdych

Federer

Djokovic

Nadal

Nadal

Murray

Berdych

Soderling

Federer

Ferrer

Djokovic

Roddick

Nadal

Berdych

Federer

Djokovic

Nadal

Djokovic

Nadal

Murray

Berdych

Soderling

Federer

Ferrer

Djokovic

Roddick

Nadal

Berdych

Federer

Djokovic

Nadal

Djokovic

Nadal

Sports tournament
int main() {

int n;
cin >> n; // Number of participants
vector<string> players(2n - 1);
// Read the participants
for (int i = 0; i < n; ++i) cin >> players[i];
int j = 0;
// Read the results and calculate the winners
for (int k = n; k < 2n - 1; ++k) {

int score1, score2;
cin >> score1 >> score2;
if (score1 > score2) players[k] = players[j];
else players[k] = players[j + 1];
j = j + 2;

}
cout << players[2n - 2] << endl;

}

Introduction to Programming © Dept. CS, UPC 8

Sports tournament

• Exercise:

Modify the previous algorithm using only a
vector with n strings, i.e.,

vector<string> players(n)

Introduction to Programming © Dept. CS, UPC 9

Permutations

• Given a number N, generate all permutations of
the numbers 1…N in lexicographical order.

For N=4:

Introduction to Programming © Dept. CS, UPC 10

1 2 3 4
1 2 4 3
1 3 2 4
1 3 4 2
1 4 2 3
1 4 3 2

2 1 3 4
2 1 4 3
2 3 1 4
2 3 4 1
2 4 1 3
2 4 3 1

3 1 2 4
3 1 4 2
3 2 1 4
3 2 4 1
3 4 1 2
3 4 2 1

4 1 2 3
4 1 3 2
4 2 1 3
4 2 3 1
4 3 1 2
4 3 2 1

Permutations
// Structure to represent the prefix of a permutation.
// When all the elements are used, the permutation is
// complete.
// Note: used[i] represents the element i+1

struct Permut {
vector<int> v; // stores a partial permutation (prefix)
vector<bool> used; // elements used in v

};

Introduction to Programming © Dept. CS, UPC 11

3 1 8 7

v:

used:

Permutations

void BuildPermutation(Permut& P, int i);

// Pre: P.v[0..i-1] contains a prefix of the permutation.
// P.used indicates the elements present in P.v[0..i-1]
// Post: All the permutations with prefix P.v[0..i-1] have
// been printed in lexicographical order.

Introduction to Programming © Dept. CS, UPC 12

prefix empty

i

Permutations
void BuildPermutation(Permut& P, int i) {

if (i == P.v.size()) {
PrintPermutation(P); // permutation completed

} else {
// Define one more location for the prefix
// preserving the lexicographical order of
// the unused elements

for (int k = 0; k < P.used.size(); ++k) {
if (not P.used[k]) {

P.v[i] = k + 1;
P.used[k] = true;
BuildPermutation(P, i + 1);
P.used[k] = false;

}
}

}
}

Introduction to Programming © Dept. CS, UPC 13

Permutations

int main() {
int n;
cin >> n; // will generate permutations of {1..n}
Permut P; // creates a permutation with empty prefix
P.v = vector<int>(n);
P.used = vector<bool>(n, false);

BuildPermutation(P, 0);
}

void PrintPermutation(const Permut& P) {
int last = P.v.size() – 1;
for (int i = 0; i < last; ++i) cout << P.v[i] << “ ”;
cout << P.v[last] << endl;

}

Introduction to Programming © Dept. CS, UPC 14

Sub-sequences summing n

• Given a sequence of positive numbers, write all the
sub-sequences that sum another given number n.

• The input will first indicate the target sum. Next, all
the elements in the sequence will follow, e.g.

12 3 6 1 4 6 5 2

Introduction to Programming © Dept. CS, UPC 15

target
sum

sequence

Sub-sequences summing n

> 12 3 6 1 4 6 5 2

3 6 1 2

3 1 6 2

3 4 5

6 1 5

6 4 2

6 6

1 4 5 2

1 6 5

4 6 2

Introduction to Programming © Dept. CS, UPC 16

Sub-sequences summing n

• How do we represent a subset of the
elements of a vector?

– A Boolean vector can be associated to indicate
which elements belong to the subset.

represents the subset {6,1,5}

Introduction to Programming © Dept. CS, UPC 17

3 6 1 4 6 5 2

false true true false false true false

Value:

Chosen:

Sub-sequences summing n

• How do we generate all subsets of the elements of a
vector? Recursively.

– Decide whether the first element must be present or not.

– Generate all subsets with the rest of the elements

Introduction to Programming © Dept. CS, UPC 18

3 6 1 4 6 5 2

true ? ? ? ? ? ?

3 6 1 4 6 5 2

false ? ? ? ? ? ?

Subsets
containing 3

Subsets
not containing 3

Sub-sequences summing n

• How do we generate all the subsets that sum n?

– Pick the first element (3) and generate all the subsets that
sum n-3 starting from the second element.

– Do not pick the first element, and generate all the subsets
that sum n starting from the second element.

Introduction to Programming © Dept. CS, UPC 19

3 6 1 4 6 5 2

true ? ? ? ? ? ?

3 6 1 4 6 5 2

false ? ? ? ? ? ?

Sub-sequences summing n
struct Subset {

vector<int> values;
vector<bool> chosen;

};

void main() {
// Read number of elements and sum
int sum;
cin >> sum;

// Read sequence
Subset s;
int v;
while (cin >> v) {

s.values.push_back(v);
s.chosen.push_back(false);

}
// Generates all subsets from element 0
generate_subsets(s, 0, sum);

}

Introduction to Programming © Dept. CS, UPC 20

Sub-sequences summing n
void generate_subsets(Subset& s, int i, int sum);

// Pre: s.values is a vector of n positive values and
// s.chosen[0..i-1] defines a partial subset.
// s.chosen[i..n-1] is false.

// Post: A list of subsets has been printed. The subsets
// agree with s.chosen[0..i-1] such that the sum of
// the chosen values in s.values[i..n-1] is sum.

// Terminal cases:

// · sum < 0 nothing to print

// · sum = 0 print the subset

// · i >= n nothing to print

Introduction to Programming © Dept. CS, UPC 21

Sub-sequences summing n
void generate_subsets(Subset& s, int i, int sum) {

if (sum >= 0) {

if (sum == 0) print_subset(s);

else if (i < s.values.size()) {

// Recursive case: pick i and subtract from sum

s.chosen[i] = true;

generate_subsets(s, i + 1, sum - s.values[i]);

// Do not pick i and maintain the sum

s.chosen[i] = false;
generate_subsets(s, i + 1, sum);

}

}

}

Introduction to Programming © Dept. CS, UPC 22

Sub-sequences summing n

// Pre: s.values contains a set of values and
// s.chosen indicates the values to be printed

// Post: the chosen values have been printed in cout

void print_subset(const Subset& s) {

for (int i = 0; i < s.values.size(); ++i) {

if (s.chosen[i]) cout << s.values[i] << “ “;

}

cout << endl;

}

Introduction to Programming © Dept. CS, UPC 23

