
Introduction to Lab Sessions

PRO1

Josep Carmona, Lluís Padró

Introduction

Programació 1 -- © Dept. CS, UPC

Introduction

• In this course we will learn to write programs that run in command-
line mode (i.e. with no GUI)
• Example:

Programació 1 -- © Dept. CS, UPC

int main() {
cout << "What is your name? ";
string name;
cin >> name;
cout << "Hello " << name;
cout << ", nice to meet you.";
cout << endl;

}

$./hello
What is your name? Maria
Hello Maria, nice to meet you.
$

Introduction

• Our programs will normally read some input (e.g. the user name in
previous slide) and produce some output (e.g. the greeting)
• Example:

Programació 1 -- © Dept. CS, UPC

int main() {
cout << "Enter a number: ";
int n;
cin >> n;
cout << n << "x1 = " << n*1 << endl;
cout << n << "x2 = " << n*2 << endl;
cout << n << "x3 = " << n*3 << endl;
cout << n << "x4 = " << n*4 << endl;
cout << n << "x5 = " << n*5 << endl;

}

$./multiply
Enter a number: 121
121x1 = 121
121x2 = 242
121x3 = 363
121x4 = 484
121x5 = 605
$

Building programs

• To be run in a computer, programs need to be in executable (a.k.a.
binary) form.
• The program will read the input, process it, and produce the

appropriate output

Programació 1 -- © Dept. CS, UPC

Executable
program

Input
(e.g. “Maria”)

Output
(e.g. “Hello Maria,
nice to meet you”)

Building programs

• We can not write programs directly in binary (too costly and error
prone)
• Thus, we have Programming Languages (e.g. C++) that are closer to

humans. Programs written in such languages must be converted to
binary using a compiler.

Programació 1 -- © Dept. CS, UPC

C++ Program
int main() {

cout << "What is your name? ";
string name;
cin >> name;
cout << "Hello " << name;
cout << ", nice to meet you.";
cout << endl;

}

Compiler

Executable program
111010101010101010101010
101011010101010101010101
011110010101010101010101
111111110010101101010010

Putting it all toghether

Programació 1 -- © Dept. CS, UPC

Compiler

Executable program
111010101010101010101010101
011010101010101010101011110
010101010101010101111111110

010101101010010

Input
(e.g.

“Maria”)

Output
(e.g.

“Hello Maria, nice to
meet you”)

Statement, program
requirements

(e.g.
“write a program that

asks the user’s name and
greets her”)

Text
editor

C++ Program
int main() {

cout << "What is your name? ";
string name;
cin >> name;
cout << "Hello " << name;
cout << ", nice to meet you.";
cout << endl;

}

Checking that the program works

Programació 1 -- © Dept. CS, UPC

Executable programInput: Maria
Output

Hello Maria, nice to
meet you

Executable programInput: Joan
Output

Hello Joan, nice to
meet you

Executable programInput: Samuel
Output

Hello Joan, nice to
meet you

EXPECTED Output
Hello Maria, nice to

meet you

EXPECTED Output
Hello Joan, nice to

meet you

EXPECTED Output
Hello Samuel, nice to

meet you

diff √

diff ⨯

diff √

Linux

Programació 1 -- © Dept. CS, UPC

Linux desktop and command line

• In Linux, you have a desktop similar to that of any other O.S.
•Most tasks (copying or renaming a file, moving it to a

different folder, create a new folder, etc) can be performed
using the graphical desktop interface
• However, we are going to write command-line interface

programs, which need to be run in a command line
interpreter (also known as console, terminal, or shell)
• From the console, you can run commands to execute any

program, or to handle files (copy, rename, move, etc).
Programació 1 -- © Dept. CS, UPC

Basic shell commands

A terminal has, in a given moment, one and only one current
working directory (i.e. the folder we have currently open).
Shell commands are always referred to the current working
directory

Programació 1 -- © Dept. CS, UPC

cd dirname Open folder with given name
cd .. Close current folder and go back to parent.
pwd Print current working directory
ls List contents of current directory
mkdir dirname Create new directory with given name
rmdir dirname Remove directory with given name

Basic shell commands (cont.)

Programació 1 -- © Dept. CS, UPC

cp file1 file2 Copy file1 to file2
mv file1 file2 Rename file1 to file2
rm file Remove file
more file Show content of file

Extensive and detailed step-by-step tutorial on shell commands for
newbies:

http://linuxcommand.org/

http://linuxcommand.org/

Writing programs

Programació 1 -- © Dept. CS, UPC

• Programs must be written on a plain text editor.
• Linux offers several of them (emacs, kwrite, TextEditor, ...)
•We recommend Visual Studio Code, already available in FIB

computers

Set up programming
environment

Set up programming environment

•We need to configure
VScode to be able to
manage C++ code
1. Select “extensions”
2. Search for “c++”
3. Select extension
4. Install

1

2

3

4

1. Select the
explorer

2. Select (or
create) a
folder where
you want to
store your
programs.

Programaci

ó 1 -- © Dept. CS, UPC

Set up programming environment

1
2

1. For each new
program,
create a file

2. The file name
must have
extension .cc

Programaci

ó 1 -- © Dept. CS, UPC

Starting a new program

1

2

1. Write your
program and save
the file.

2. Open auxiliary
panel

3. Errors will appear
in tab PROBLEMS

4. Tab TERMINAL will
allow compilation
and execution

Programaci

ó 1 -- © Dept. CS, UPC

Starting a new program

1

3

2

4

How to write a program

• Launch VisualStudio code
• Create a new document
•write a sample program:

Save the program with a name that ends in .cc (e.g.
hello.cc) and notice how VScode syntax-colored the program.

Programació 1 -- © Dept. CS, UPC

#include <iostream>
using namespace std;

int main() {
cout << "Hello everybody!" << endl;

}

How to compile a program

• Navigate in the terminal to the directory where you saved
the file hello.cc
• Compile the program:

p1++ -o hello.x hello.cc
• If there are errors, fix them and compile again.
• Execute the program

./hello.x

Programació 1 -- © Dept. CS, UPC

Example: squares.cc

#include <iostream>
using namespace std;

int main() {
int a,b,c;
cin >> a >> b >> c;
cout << a*a << " " << b*b << " " << c*c << endl;

}

$ p1++ -o squares.x squares.cc
$./squares.x
6 3 12
36 9 144
$

Example: nif.cc
#include <iostream>
using namespace std;

int main() {
int dni;
cin >> dni;
const string data("TRWAGMYFPDXBNJZSQVHLCKE")
cout << "NIF letter: " << data[dni%23] << endl;

}

$ p1++ -o nif.x nif.cc
$./nif.x
45678901
NIF letter: G
$

Handling compilation errors

#include <iostream>
using namespace std;

int main() {
int a,b;
cin >> a >> b >> c
cout << a*a << " " << b*b << " " << c*c << endl;

}

$ p1++ -o squares.x squares.cc
squares.cc:6:30: error: ‘c’ was not declared
squares.cc:7:3: error: expected
‘;’ before ‘cout‘

• If there are errors, the executable is not created.
We must fix the errors and compile again.

Organize your work

Programació 1 -- © Dept. CS, UPC

Organize your exercises

• During the course there will be two lab exams.
• There are dozens of exercises in the course.
• Exercises are organized in lists, by course chapters.
• It is crucial to have exercises organized to avoid getting lost.

Programació 1 -- © Dept. CS, UPC

Organize your
exercises

Programaci
ó 1 --

© Dept. CS, UPC

• We recommend having a
folder for each problem.
• It is also useful to group

problem folders depending
on the list they belong to.
• In each problem folder, you

can have the C++ program,
the executable, and its input
and output files.

The Jutge

Programació 1 -- © Dept. CS, UPC

Automatic scoring of programs

https://jutge.org is the environment where we will grade the lab
exercises and we will take the course exams.
• You have been invited to this course. Find it in the list, and click

“enroll this course”.
• You can submit your programs to the jutge and find out whether

they work.
• You can also download the input files and expected outputs for

each problem, to check them in your PC.
• It is important to be able to work locally: In the exams,

penalizations are applied after three requests to the jutge.
Programació 1 -- © Dept. CS, UPC

https://jutge.org/

Important things to know

• At https://pro1.cs.upc.edu you will find important information
about this course.
• In particular, check the tab

“Entregues problemes”, which is updated frequently, and
contains:
• The range of dates when each list must be solved.
• Which problems of each list you have solved so far.

Programació 1 -- © Dept. CS, UPC

https://pro1.cs.upc.edu/

Example

• Now your professor will do an example problem on the
jutge. Try to follow it in your computer.

Programació 1 -- © Dept. CS, UPC

Checking program results

Programació 1 -- © Dept. CS, UPC

Input/output in C++

•Read data

•Write data

• The output must be exactly as the expected for the
problem to be accepted by the jutge.

int a,b,c;
cin >> a >> b >> c;

int a;
cout << "Value: " << a << endl;

Programació 1 -- © Dept. CS, UPC

Problems with manual input/output

•Manual input
•We can not change the input once we press return.
• Time-consuming and error-prone when the input is long.
•We must press ctl-D to end the input.

•Manual check of the output
• If the output is long, it is difficult to spot small differences

with respect to expected output.
Programació 1 -- © Dept. CS, UPC

“Automatic” input/output

•Run program redirecting input and output
./squares.x <sample-1.inp >sample-1.out
Symbol < will read input from given file instead of keyboard.
Symbol > will write output to given file instead of display.

•Compare obtained output with expected output
kompare sample-1.out sample-1.cor

Programació 1 -- © Dept. CS, UPC

